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Introduction: AI as Division of Labour
 

The special skill of each individual machine-operator, who has now been deprived of all
significance, vanishes as an infinitesimal quantity in the face of the science, the gigantic
natural forces, and the mass of the social labour embodied in the system of machinery,
which, together with these three forces, constitutes the power of the ‘master’.

Karl Marx, Capital, 18671

All human beings are intellectuals … although one can speak of intellectuals, one cannot
speak of non-intellectuals, because non-intellectuals do not exist … There is no human
activity from which every form of intellectual participation can be excluded: Homo faber
cannot be separated from homo sapiens.

Antonio Gramsci, The Prison Notebooks [1932]2

In the twentieth century, few would have ever defined a truck driver as a
‘cognitive worker’, an intellectual. In the early twenty-first, however, the
application of artificial intelligence (AI) in self-driving vehicles, among
other artefacts, has changed the perception of manual skills such as driving,
revealing how the most valuable component of work in general has never
been just manual, but has always been cognitive and cooperative as well.
Thanks to AI research – we must acknowledge it – truck drivers have
reached the pantheon of intelligentsia. It is a paradox – a bitter political
revelation – that the most zealous development of automation has shown
how much ‘intelligence’ is expressed by activities and jobs that are usually
deemed manual and unskilled, an aspect that has often been neglected by



labour organisation as much as critical theory. In fact, in the current digital
age, only a few sociologists, such as Richard Sennett, have taken the trouble
to emphasise that ‘making is thinking’, a dimension that the historians of
science such as Lissa Roberts and Simon Schaffer have captured in the
elegant image of the ‘mindful hand’ – a hand that, in the workshop of the
Renaissance as much as in those of the industrial age, has not only
expressed muscular strength but also inspired design, inventions, and
scientific breakthroughs.3 If there is a denial of the intelligence of manual
labour and social activities today, that seems to be a symptom also of the
overgrowth of the digital sphere and the dematerialisation of human
activities, which have contributed to the aura of mystery that has been
eventually constructed around AI.

What is AI? A dominant view describes it as the quest ‘to solve
intelligence’ – a solution supposedly to be found in the secret logic of the
mind or in the deep physiology of the brain, such as in its complex neural
networks. In this book I argue, to the contrary, that the inner code of AI is
constituted not by the imitation of biological intelligence but by the
intelligence of labour and social relations. Today, it should be evident that
AI is a project to capture the knowledge expressed through individual and
collective behaviours and encode it into algorithmic models to automate the
most diverse tasks: from image recognition and object manipulation to
language translation and decision-making. As in a typical effect of ideology,
the ‘solution’ to the enigma of AI is in front of our eyes, but nobody can see
it – nor does anybody want to.

Let us return to the contested project of the self-driving car. What kind
of work does a driver perform? And to what extent can AI automate such an
activity? With a considerable degree of approximation and hazard, a self-
driving vehicle is designed to imitate all the micro-decisions that a driver
makes on a busy road.4 Its artificial neural networks ‘learn’ the correlations
between the visual perception of the environment and the mechanical
control of the vehicle (steering, accelerating, braking) together with ethical
decisions to be taken in a few milliseconds in case of danger. Driving
requires high cognitive skills that cannot be left to improvisation, but also
rapid problem-solving that is possible only thanks to habit and training that
are not completely conscious. Driving remains essentially a social and
cooperative activity, which follows both codified rules (with legal
constraints) and spontaneous ones, including a tacit cultural code which is



different in each locality. It is deemed difficult to encode such a complex
activity, and even the entrepreneur Elon Musk has admitted, after not a few
fatal accidents of Tesla cars, that ‘generalized self-driving is a hard
problem’.5 In all its problematic aspects, however, the industrial project of
self-driving vehicles has made clear that the task of driving is not merely
‘mechanical’. If the skill of driving can be translated into an algorithmic
model to begin with, it is because driving is a logical activity – because,
ultimately, all labour is logic.6

What, then, is the relationship between labour, rules, and automation,
i.e., the invention of new technologies? This entanglement is the core
problem of AI which this book seeks to explore. But this is not a completely
new perspective for framing AI. The historian of science Lorraine Daston,
for example, has already illustrated this problem in the great calculation
projects of the Enlightenment that preceded automatic computation. In the
late eighteenth century, in order to produce the lengthy logarithmic tables
necessary for the modernisation of revolutionary France, the mathematician
Gaspard de Prony had the idea to apply the industrial method of the division
of labour (canonised by Adam Smith in The Wealth of Nations) to hand
calculation.7 For this purpose, de Prony arranged a social algorithm – a
hierarchical organisation of three groups of clerks which divided the toil
and each performed one part of the long calculation, eventually composing
the final results. A few years later, in industrial England, Charles Babbage
adopted the intuition of the division of labour as the internal principle of the
Difference Engine, designing in this way the first prototype of the modern
computer. Babbage, importantly, understood that the division of labour was
not only a principle to design machines but also to compute the costs of
production (what has been known since then as the ‘Babbage principle’).

In the industrial age, the supervision of the division of labour used to be
the task of the factory’s master.8 The eye of the master, in workshops and
also in camps and plantations, had long supervised and disciplined workers,
drawing the plans of assembly lines as well as the shifts of forced labour.
Before industrial machines were invented, urban sweatshops and colonial
estates were already ‘mechanical’ in their regime of body discipline and
visuality.9 As the philosopher Michel Foucault illustrated, the imposition of
such disciplinary techniques – based on the segmentation of time, space,
and relations – prepared the terrain for the capitalist regime of labour



exploitation.10 In parallel, the rationalist view of the world helped to further
describe the movement of the human body in detail and draft its
mechanisation. Historian Sigfried Giedion detailed this process in his
famous volume Mechanisation Takes Command. According to Giedion,
mechanisation begins ‘with the concept of Movement’, then it replaces
handicraft, and, finally, its full development is ‘the assembly line, wherein
the entire factory is consolidated into a synchronous organism’.11

This mechanical mentality culminated in Taylorism – a system of
‘scientific management’ that sought to economize workers’ movements
down to the finest detail. Indeed, as the political economist Harry
Braverman once noted, ‘Taylor understood the Babbage principle better
than anyone of his time, and it was always uppermost in his calculations.’12

In order to surveil the worker’s smallest gesture, the Taylorist system even
acquired cinematographic eyes: the factory’s master became a sort of movie
director who filmed workers in order to measure and optimize their
productivity, somehow realising what media scholar Jon Beller has termed
the ‘cinematic mode of production’.13 Taylorism prompted the discipline of
‘time and motion study’ which was pursued, in the same years, by both the
Soviet revolutionary Aleksei Gastev and the US engineers Frank and Lillian
Gilbreth, who introduced similar photographic techniques such as,
respectively, the cyclogram, and chronocyclegraph.14 This book follows
these analytical studies of the labour process through the industrial age up
to the rise of AI, aiming to show how the ‘intelligence’ of technological
innovation has often originated from the imitation of these abstract
diagrams of human praxis and collective behaviours.

When industrial machines such as looms and lathes were invented, in
fact, it was not thanks to the solitary genius of an engineer but through the
imitation of the collective diagram of labour: by capturing the patterns of
hand movements and tools, the subdued creativity of workers’ know-how,
and turning them into mechanical artefacts. Following this theory of
invention, which was already shared by Smith, Babbage, and Marx in the
nineteenth century, this book argues that the most sophisticated ‘intelligent’
machines have also emerged by imitating the outline of the collective
division of labour. In the course of this book, this theory of technological
development is renamed the labour theory of automation, or labour theory



of the machine, which I then extend to the study of contemporary AI and
generalise into a labour theory of machine intelligence.15

Already for Marx, the master was no longer an individual but, as
mentioned in the opening quote to this introduction, an integrated power
made up of ‘the science, the gigantic natural forces, and the mass of the
social labour embodied in the system of machinery’. After the expansion of
‘the division of labour in society’, as Émile Durkheim recorded at the end
of the nineteenth century, the eye of the master evolved as well into new
technologies of control such as statistics and the global ‘operations of
capital’ (to use Sandro Mezzadra and Brett Neilson’s apt phrase).16 Since
the end of the twentieth century, then, the management of labour has turned
all of society into a ‘digital factory’ and has taken the form of the software
of search engines, online maps, messaging apps, social networks, gig-
economy platforms, mobility services, and ultimately AI algorithms, which
have been increasingly used to automate all the abovementioned services.17

It is not difficult to see AI nowadays as a further centralisation of digital
society and the orchestration of the division of labour throughout society.

The thesis that the design of computation and ‘intelligent machines’
follow the schema of the division of labour is not heretical but receives
confirmation from the founding theories of computer science, which have
inherited a subtext of colonial fantasy and class division from the industrial
age. The celebrated genius of automated computation Alan Turing, for
instance, himself reiterated a hierarchical and authoritarian mode of
thinking. In a 1947 lecture, Turing envisioned the Automatic Computing
Engine (ACE), one of the first digital computers, as a centralised apparatus
that orchestrated its operations as a hierarchy of master and servant roles:

Roughly speaking those who work in connection with the ACE will be divided into its
masters and its servants. Its masters will plan out instruction tables for it, thinking up deeper
and deeper ways of using it. Its servants will feed it with cards as it calls for them. They will
put right any parts that go wrong. They will assemble data that it requires. In fact the
servants will take the place of limbs. As time goes on the calculator itself will take over the
functions both of masters and of servants. The servants will be replaced by mechanical and
electrical limbs and sense organs. One might for instance provide curve followers to enable
data to be taken direct from curves instead of having girls read off values and punch them on
cards. The masters are liable to get replaced because as soon as any technique becomes at all
stereotyped it becomes possible to devise a system of instruction tables which will enable the
electronic computer to do it for itself. It may happen however that the masters will refuse to
do this. They may be unwilling to let their jobs be stolen from them in this way. In that case
they would surround the whole of their work with mystery and make excuses, couched in



well chosen gibberish, whenever any dangerous suggestions were made. I think that a
reaction of this kind is a very real danger.18

The prose of the young Turing, in dividing computing tasks between
‘masters’, ‘servants’, and ‘girls’ is fierce. It is reminiscent of Andrew Ure’s
gothic depictions of the industrial factory in the Victorian age as ‘a vast
automaton, composed of various mechanical and intellectual organs, acting
in uninterrupted concern for the production of a common object, all of them
being subordinated to a self-regulated moving force’.19 Similarly, Turing
imagined an intelligent automaton that in the future would be able to
reprogram itself and replace both masters and servants. Turing’s vision is
contradicted today by the army of ‘ghost workers’ from the Global South,
who, as Mary Gray and Siddharth Suri have documented, are removed from
sight to let the show of machine autonomy go on.20 Paradoxically for
Turing, AI came to replace mostly masters, that is managers, rather than
servants – workers are needed (and always will be) to produce data and
value for the voracious pipelines of AI and its global monopolies, and, on
the other hand, to provide the maintenance of such a mega-machine under
the form of content filtering, security checks, evaluation and non-stop
optimisation. As gender studies scholars Neda Atanasoski and Kalindi Vora
have pointed out, the dreams of full automation and AI such as Turing’s are
not neutral but are historically grounded on the ‘surrogate humanity’ of
enslaved servants, proletarians, and women that have made possible,
through their invisible labour, the universalistic ideal of the free and
autonomous (white) subject.21

The many histories of AI

Writing a history of AI in the current predicament means reckoning with a
vast ideological construct: among the ranks of Silicon Valley companies
and also hi-tech universities, propaganda about the almighty power of AI is
the norm and sometimes even repeats the folklore of machines achieving
‘superhuman intelligence’ and ‘self-awareness’. This folklore is well
exemplified by apocalyptic Terminator narratives, in which AI systems
would achieve technological singularity and pose an ‘existential risk’ to the
survival of the human species on this planet, as the futurologist Nick
Bostrom, among others, professes.22 Mythologies of technological



autonomy and machine intelligence are nothing new: since the industrial
age, they have existed to mystify the role of workers and subaltern
classes.23 As Schaffer has remarked, while describing the cult of automata
in Babbage’s age, ‘To make machines look intelligent it was necessary that
the sources of their power, the labour force which surrounded and ran them,
be rendered invisible.’24

Speculative narratives aside, which never go into sufficient technical
detail to clarify which kind of algorithms would actually execute
‘superintelligence’, one also finds today numerous technical histories of AI
that, on the other hand, promise to explain its complex algorithms.25 These
technical overviews often voice corporate expectations for a ‘master
algorithm’ that would solve all tasks of perception and cognition at a
prodigious rate of information compression (because this is the very
unromantic metrics by which ‘intelligent’ systems are ultimately
assessed).26 Once again, these readings rarely consider the historical
contexts and social implications of automation, and draw a linear history of
mathematical achievements which reinforces technological determinism.27

Within these technical histories of AI, one should also include cognitive
science, as a considerable part of this field actually developed under the
influence of computer science. Margaret Boden’s monumental two-volume
Mind as Machine (2006) remains probably one of the most detailed
histories of AI as cognitive science, showing the complexity of this
genealogy, however, without ideological fervour.

Resisting such narrow technical perspectives, a growing number of
authors have started addressing the social implications of AI from the
standpoint of workers, communities, minorities, and society as a whole.
These authors question the virtuosity of algorithms that claim to be
‘intelligent’ while in fact amplifying inequalities, perpetuating gender and
racial biases, and consolidating new form of knowledge extractivism.
Thanks to books such as Cathy O’Neil’s Weapons of Math Destruction
(2016), Safiya Noble’s Algorithms of Oppression (2018), Ruha Benjamin’s
Race after Technology (2019), and Wendy Chun’s Discriminating Data
(2021), among many others, the new field of critical AI studies is
growing.28 This novel scholarship builds upon older investigations of AI,
cybernetics, and Cold War rationality from previous decades, among which
should be included Alison Adam’s Artificial Knowing (1998), Philip Agre’s



Computation and Human Experience (1997), Paul Edwards’s The Closed
World (1996), Joseph Weizenbaum’s Computer Power and Human Reason
(1976), and Hubert Dreyfus’s paper for the Rand Corporation ‘Alchemy and
Artificial Intelligence’ (1965), which is usually considered the first
philosophical critique of AI.29

Within the expanding landscape of critical works, this book’s concern is
to illuminate the social genealogy of AI and, importantly, the standpoint –
the social classes – from which AI has been pursued as a vision of the world
and epistemology. Different social groups and configurations of power have
shaped information technologies and AI in the past century. Rather than on
the ‘shoulders of giants’, as the saying goes, it could be said that the early
paradigms of mechanical thinking and late machine intelligence have been
developed, in different times and ways, ‘on the shoulders’ of merchants,
soldiers, commanders, bureaucrats, spies, industrialists, managers, and
workers.30 In all these genealogies, the automation of labour has been the
key factor, but this aspect is often neglected by a historiography of
technology that privileges science’s point of view ‘from above’.

A common approach, for instance, links quite deterministically the rise
of cybernetics, digital computation, and AI to abundant funding from the
US military during World War II and in the Cold War period.31 Yet recent
studies have clarified that the archipelago of such ‘war rationality’ was
quite unstable and cultivated paradigms such as game theory and linear
programming that were also key in modelling the arms race and military
logistics.32 The influence of state apparatuses on information technologies,
anyhow, started well before the military acceleration of World War II: the
automation of information retrieval and statistical analysis dates back to the
need to mechanise public bureaucracy and government work, at least since
the 1890 United States census that introduced the Hollerith machine to
process punched cards. The ‘government machine’ (as Jon Agar has called
it) anticipated the rise of the large data centres of the digital age, which
have been, as is notorious, not just the business of internet companies but
also of intelligence agencies, as the mathematician Chris Wiggins and
historian Matthew L. Jones have detailed.33 In short, for more than a
hundred years, it has always been the accumulation of ‘big data’ about
society and its behaviours that prompted the development of information
technologies, from Hollerith’s tabulator to machine learning itself.34



In summary, AI represents the continuation of data analytics techniques
first supported by state bureaus, secretly cultivated by intelligence agencies,
and ultimately consolidated by internet companies into a planetary business
of surveillance and forecasting. This reading, however, is once again a
history ‘from above’ that focuses on only the techniques of control and
rarely the subjects on whom this control is exercised. The targets of this
power (or ‘surveillance capitalism’ in Shoshana Zuboff’s definition) are
usually described not as actors possessing autonomy and ‘intelligence’ on
their own but as passive subjects of measurement and control. This is a
problem of critical theory in general and critical AI studies in particular:
although these studies are concerned about the impact of AI on society, they
often overlook the role of collective knowledge and labour as the primary
source of the very ‘intelligence’ that AI comes to extract, encode, and
commodify. Moreover, these studies often fail to see the contribution of
social forms and forces to the key stages of technological invention and
development. A true critical intervention should challenge this hegemonic
position of AI as the unique ‘master’ of collective intelligence. The Italian
philosopher Antonio Gramsci once argued against the hierarchies of
education that ‘all human beings are intellectuals’: in a similar way, this
book aims at rediscovering the centrality of the social intelligence that
informs and empowers AI. It also contends – in a more radical thesis – that
such social intelligence shapes the very design of AI algorithms from
within.

This book is intended as an incursion into both the technical and social
histories of AI, integrating these approaches into a sociotechnical history
that may identify also the economic and political factors that influenced its
inner logic. Rather than siding with a conventional social constructivism
and going beyond the pioneering insights of social informatics, it tries to
extend to the field of AI the method of historical epistemology – one
propagated in the history of science, in a different way, by Boris Hessen,
Henryk Grossmann, Georges Canguilhem, and Gaston Bachelard, and more
recently by the work of the Max Planck Institute for the History of Science
in Berlin, among other initiatives.35 Where social constructivism
generically emphasises the influence of external factors on science and
technology, historical epistemology is concerned with the dialectical
unfolding of social praxis, instruments of labour, and scientific abstractions
within a global economic dynamics. This book attempts to study AI and



algorithmic thinking in a similar way that historical and political
epistemology has studied, in the modern age, the rise of mechanical
thinking and scientific abstractions in relation to socio-economic
developments.36

In this respect, over the past decades, a political epistemology of science
and technology has also been strongly pursued by feminist theorists such as
Hilary Rose, Sandra Harding, Evelyn Fox Keller, and Silvia Federici,
among others. These authors have convincingly explained the rise of
modern rationality and mechanical thinking (to which AI also belongs) in
relation to the transformation of women’s body, and the collective body in
general, into a productive and docile machine.37 In the traditions of political
epistemology, we should also consider the labour process analysis that was
initiated by Braverman’s Labor and Monopoly Capital (1974) and the
workers’ inquiries of Italian operaismo, which Romano Alquati, for
instance, conducted at the Olivetti computer factory in Ivrea as early as
1960.38 Braverman and Alquati pioneered influential works that first
showed how Babbage’s automated computation projects in the nineteenth
century as much as cybernetics in the twentieth were inherently related to
the sphere of labour and its organisation.

The automation of cognition as pattern recognition

The translation of a labour process into a logical procedure and
subsequently into a technical artefact is rarely straightforward and flawless;
it often displays instead a spurious and experimental character. In this sense,
the title The Eye of the Master contains not only a political but also a
technical analogy. It signals, somewhat ironically, the ambivalence of the
current paradigm of AI – deep learning – which emerged not from theories
of cognition, as some may believe, but from contested experiments to
automate the labour of perception, or pattern recognition.39 Deep learning
has evolved from the extension of 1950s techniques of visual pattern
recognition to non-visual data, which now include text, audio, video, and
behavioural data of the most diverse origins. The rise of deep learning dates
to 2012, when the convolutional neural network AlexNet won the ImageNet
computer vision competition. Since then, the term ‘AI’ has come to define
by convention the paradigm of artificial neural networks which, in the



1950s, it must be noted, was actually its rival (an example of the
controversies that characterise the ‘rationality’ of AI).40 Stuart and Hubert
Dreyfus illuminated this schism in their 1988 essay ‘Making a Mind versus
Modeling the Brain’, in which they outlined the two lineages of AI –
symbolic and connectionist – that, based on different logical postulates,
have also followed different destinies.41

Symbolic AI is the lineage that is associated with the 1956 Dartmouth
workshop for which John McCarthy coined the questionable term ‘artificial
intelligence’.42 Its key applications have been the Logic Theorist and
General Problem Solver – and the array of expert systems and inference
engines in general – which were proven trivial and prone to combinatorial
explosion. Connectionism, on the other hand, is the lineage of artificial
neural networks pioneered by Frank Rosenblatt’s invention of the
‘perceptron’ in 1957, which unfolded into convolutional neural networks in
the late 1980s and, eventually, launched the deep learning architecture that
has prevailed since the 2010s.

The two lineages pursue different kinds of logic and epistemology. The
former professes that intelligence is a representation of the world (knowing-
that) which can be formalised into propositions and, therefore, mechanised
following deductive logic. The latter, in contrast, argues that intelligence is
experience of the world (knowing-how) which can be implemented into
approximate models constructed according to inductive logic. Pace
corporate propaganda and computationalist philosophies of the mind,
neither of these two paradigms has managed to fully imitate human
intelligence. Machine learning and deep artificial neural networks, however,
due to their resolution in rendering multidimensional data, have proven
quite successful in techniques of pattern recognition and, therefore, in the
automation of numerous tasks. Against a tradition which repeats the overly
celebrated saga of the Dartmouth workshop, this book highlights the origins
of artificial neural networks, connectionism, and machine learning as a
more compelling history of AI about which, especially regarding
Rosenblatt’s work, critical and exhaustive literature is still missing.

Structure of the book



The book is divided into three sections: a methodological and introductory
first chapter and two main historical parts on the industrial and information
ages respectively. This book does not pursue, however, a linear history of
technology and automation. Rather, each chapter can be read as an
independent ‘workshop’ for the study of algorithmic practices and machine
intelligence.

Chapter 1 moves from the need to clarify, before anything else, the
central notion of computation: the algorithm. What is an algorithm? In
computer science, it can be defined as a finite procedure of step-by-step
instructions to turn an input into an output making the best use of the given
resources. The chapter challenges this purely technical definition of the
algorithm and argues for a materialist critique that may recognise its
economic and social roots. After all, as with other abstract notions, such as
number or mechanism, the algorithm has a long history; the mathematician
Jean-Luc Chabert finds that ‘algorithms have existed since the beginning of
time and existed long before a special word was coined to describe them’.43

By excavating the social mathematics of the ancient Hindu ritual
Agnicayana, the chapter argues that algorithmic thinking and practices have
belonged to all civilisations, not only to the metalanguage of Western
computer science. Against mathematical and philosophical intuitionism,
which believes in the full independence of mental constructs, the chapter
stresses that algorithmic thinking emerged as a material abstraction,
through the interaction of mind with tools, in order to change the world and
solve mostly economic and social problems. Deliberately trenchant, the
main thesis of this chapter is that labour is the first algorithm.

The two main parts of the book endeavour to study machine intelligence
in two historical epochs, signalling the parallel development of similar
problematics. Part I is concerned with labour as a source of knowledge and
with the automation of mental labour during the industrial age in the UK.
This historical moment is usually studied from the perspective of manual
labour, capital accumulation, and fossil energy, and rarely in its cognitive
components. Part II, on the other hand, analyses the rise of connectionism
(the doctrine of artificial neural networks) in the circles of US cybernetics
between the 1940s and 1960s. Artificial neural networks emerged from the
project of the automation of visual labour (commonly termed as pattern
recognition), which is something distinct from manual and mental labour.
The study of the role of knowledge, mental labour, and science in the



nineteenth century is necessary, I contend, to understand the history of
automation that prepared the rise of AI in the twentieth century. Under
different rubrics, the two parts of the book deal with the same problem: the
relation between the forms of technological innovation and social
organisation.

As already expounded by historians of science such as Daston and
Schaffer, it is easier to find the impetus for modern computation in the
workshops of the industrial age than in the volumes of mathematics or
natural philosophy of the time. Chapter 2, in this sense, revisits Babbage’s
pioneering experiments in automated computation – the Difference and the
Analytical Engines – focusing on their economic matrix and avoiding the
usual machine hagiography. In order to understand the design of these early
computers (and their variant of ‘machine intelligence’), the chapter
explicates two of Babbage’s principles of labour analysis. His first
analytical principle, the labour theory of the machine, states that the design
of a machine imitates and replaces the diagram of a previous division of
labour. The second, the principle of labour calculation (usually called the
‘Babbage principle’) states that the division of labour into small tasks
makes it possible to measure and purchase the exact quantity of labour that
is necessary for production. These two principles, combined together,
describe the industrial machine not only as a means for augmenting labour
but also as an instrument (and implicit metrics) for measuring it. Babbage
applied both principles to the automation of hand calculation: computation
emerged, then, not only as the automation of mental labour but also as a
metrics for the calculus of its cost.

Beyond the usual ‘thermodynamic’ interpretations of manual labour,
chapter 3 points out that sophisticated notions of mental labour, collective
intelligence, and knowledge alienation were already elaborated in the
industrial era. It examines the circulation of ideas between the making of
nineteenth-century political economy and the Mechanics’ Institute
movement, between the March of Intellect campaign and the Machinery
Question (a debate that animated English society about technological
unemployment). The chapter expands, from opposite angles, the previous
reflections on Babbage’s principles of labour analysis and invention. On the
one hand, it shows that, well before the theoreticians of the knowledge
society of the twentieth century, a knowledge theory of labour was already
advanced by Ricardian socialists such as William Thompson and Thomas



Hodgskin. On the other hand, it urges a recognition of the influence of
industrial machines and instruments on the development of the knowledge
of nature, expanding on a machine theory of science. The expression
‘machine intelligence’ ultimately acquires at least four meanings in this
discussion: the human knowledge of the machine, the knowledge embodied
by the machine’s design, the human tasks automated by the machine, and
the new knowledge of the world made possible by its use.

Chapter 4 centres on the relation between Babbage and another pillar of
the political economy of the industrial age, Karl Marx – a relation which
remains under-investigated.44 The chapter, like every other in this book,
explores the imbrication of knowledge into material acts and artefacts, also
reading Marx’s theories under this lens. In a famous fragment from the
Grundrisse, Marx predicted that the progressive accumulation of
knowledge (or what he called the ‘general intellect’) into machines would
undermine the laws of capitalist accumulation and cause its ultimate crisis.
Especially thanks to the interpretation of Italian operaismo after 1989, this
unorthodox passage (renamed as ‘The Fragment on Machines’) has had a
vast reception among generations of scholars and activists as prophesising
the knowledge economy, the dotcom crash, or the rise of AI. The chapter
uncovers, after decades of speculation, the origin of the idea of the ‘general
intellect’ – which Marx first encountered in William Thompson’s book An
Inquiry into the Principles of the Distribution of Wealth (1824). The chapter
explains, more importantly, why this notion then disappeared in Marx’s
Capital. In Thompson, Marx found the idea of the virtuous accumulation of
knowledge but also the argument that once knowledge has been alienated
by machines, it becomes hostile to workers. But it was in Babbage that
Marx found an alternative theory to resolve the ambiguous role that
knowledge and science had in the industrial economy. In Capital, Marx
replaced the utopian expectations around the ‘general intellect’ with the
material figure of the ‘general worker’ (Gesamtarbeiter), which was
another name for the extended cooperation of labour. The figure of the
general worker, as a sort of super-organism connecting humans and
machines, marks in this book the passage to the age of cybernetics and its
experiments in self-organisation. As a transition to the second part, chapter
5 briefly summarises the transformation of labour from the industrial to the
cybernetic age, clarifying its bifurcation into abstract energy and abstract
form (or information).



Part II focuses on connectionism as the main genealogy of current AI
systems (avoiding reiterating known literature on cybernetics, information
theory, and symbolic AI). Chapter 6 frames the rise of artificial neural
networks from a neglected perspective – that is, from the studies on the
self-organisation of organisms and machines (which have passed unnoticed
even to Boden in her extensive history of AI). Theories of self-organisation
are today popular in physics, chemistry, biology, neuroscience, and ecology,
but it took cybernetics, rather than a natural science, to trigger the debate on
self-organisation in the mid-twentieth century. The chapter illustrates the
paradigms of self-organising computation that have contributed, among
others, to the consolidation of connectionism – in particular, Warren
McCulloch and Walter Pitts’s original idea of neural networks (1943–47),
John von Neumann’s cellular automata (1948), and Rosenblatt’s
‘perceptron’ (1957). The chapter investigates how cybernetic theories of
self-organisation also responded to sociotechnical changes. As happened in
previous centuries with other variants of mechanistic thinking, cybernetics
projected onto brains and nature forms of organisation that were already
part of the technical composition of the surrounding society. A key example
is the telegraph network, which was used, in the nineteenth century, as an
analogy for the nervous system and, in the twentieth century, to formalise
neural networks – not to mention the Turing machine itself.

Chapter 7 retraces McCulloch and Pitts’s idea of artificial neural
networks to the forgotten Gestalt controversy: the debate on whether or not
human perception is an act of cognition that can be analytically represented
and therefore mechanised. Textbooks on machine learning usually repeat
that McCulloch and Pitts were inspired by the neurophysiology of the brain,
while overlooking this intellectual confrontation. It was in the aftermath of
these debates, in fact, that the expression ‘Gestalt perception’ gradually
morphed, in military and academic publications, into the well-known
expression ‘pattern recognition’. The Gestalt controversy is a cognitive
fossil of unresolved problems whose study can help to understand the form
and limits that deep learning has inherited – specifically, the unresolved
opposition between perception and cognition, image, and logic, that
haunted the technoscience of the twentieth century.

Chapter 8 clarifies the ambivalent role that the neoliberal economist
Friedrich Hayek had in consolidating connectionism. In his 1952 book The
Sensory Order, Hayek proposed a connectionist theory of the mind which



was already far more advanced than the definitions of AI that emerged from
the 1956 Dartmouth workshop. In this text, as McCulloch and Pitts had also
proposed, Hayek speculated about the possibility of a machine fulfilling a
similar function to ‘the nervous system as an instrument of classification’.45

Hayek studied the self-organisation of the mind in a similar fashion to the
cyberneticians but in order to serve a different agenda: not industrial
automation but the autonomy of the market.

Chapter 9 focuses on one of the most important and least studied
episodes in the history of AI: Rosenblatt’s invention of the ‘perceptron’
artificial neural network in the 1950s. In spite of its limitations, the
perceptron constituted a breakthrough in the history of computation because
it automated, for the first time, a technique of statistical analysis; it is
remembered, for this reason, as the first algorithm of machine learning.46

As a technical form, the perceptron claimed to imitate biological neural
networks. But as a mathematical form, it expressed a different trick: in
order to solve pattern recognition, it represented the pixels of an image as
independent coordinates in a multidimensional space. Interestingly, the
statistical method of multidimensional projection originated from the fields
of psychometrics and eugenics in the late nineteenth century, and was
analogous to the technique employed by Charles Spearman for evaluating
‘general intelligence’ in the controversial practice of the intelligence
quotient (IQ) test. This is a further proof of the social genealogy of AI: the
first artificial neural network – the perceptron – was born not as the
automation of logical reasoning but of a statistical method originally used
to measure intelligence in cognitive tasks and to organise social hierarchies
accordingly.

The conclusion considers how the operative principle of AI, in fact, is
not just labour automation but also the imposition of social hierarchies of
manual and mental labour through automation. From the nineteenth century
to the twentieth, the ‘eye of the master’ of industrial capitalism extended to
the whole society and imposed new forms of control, also based on
statistical measurements of ‘intelligence’, to discriminate workers into
classes of skill. This was, for instance, one of the direct applications of the
IQ test according to the US psychologist Lewis Terman, who argued in
1919 that ‘the IQ of 75 or below belongs ordinarily in the unskilled labor
class, that 75 to 85 is preeminently the range for semiskilled labor, and that
80 or 85 is ample for success in some kinds of skilled labor’.47 AI continues



this process of encoding social hierarchies and discriminating among the
labour force by imposing indirectly a metrics of intelligence. The class,
gender, and racial bias that AI systems notoriously amplify should not only
be considered a technical flaw, but an intrinsic discriminatory feature of
automation in a capitalist context. The impact of AI bias is not limited to
social oppression: it also leads to an implicit imposition of labour and
knowledge hierarchies that reinforces the polarisation of skilled and
unskilled workers in the job market. The replacement of traditional jobs by
AI systems should be studied together with the displacement and
multiplication of precarious, underpaid, and marginalised jobs across a
global economy.48 AI and ghost work appear to be, in this view, the two
sides of the one and same mechanism of labour automation and social
psychometrics.

This book proposes the labour theory of automation, in the end, not only
as an analytical principle to dismantle the ‘master algorithm’ of AI
monopolies but also as a synthetic principle: as a practice of social
autonomy for new forms of knowledge making and new cultures of
invention.



1
The Material Tools of Algorithmic Thinking
 

The power of our ‘mental’ tools is amplified by the power of our ‘metal’ tools.
Jeannette Wing, ‘Computational Thinking’, 20081

When using a material tool, more can always be learned than the knowledge invested in its
invention.

Peter Damerow and Wolfgang Lefèvre, ‘Tools of Science’, 19812

Rules became mechanical before they could actually be executed by machines.
Lorraine Daston, ‘Algorithms before Computers’, 20173

Recomposing a dismembered god

In a myth of cosmogenesis of the Vedas, it is narrated that the supreme god
Prajapati is shattered into pieces in the act of creating the universe. In the
aftermath of creation, counter-intuitive to Western narratives of mastery and
principles of non-contradiction, the creator’s body is found unstrung,
dismembered. This ancient myth is still re-enacted today, in India, in the
Agnicayana ritual, in which Hindu devotees symbolically recompose the
fragmented body of the god by building the fire altar Syenaciti (see fig.



1.1). The Syenaciti altar is laid down by aligning a thousand bricks of
precise shape and size according to an elaborate geometric plan that draws
the profile of a falcon. Workers compose five layers of 200 bricks each
while reciting dedicated mantra and following step-by-step instructions.
Solving a riddle that is the key to the ritual, each layer must maintain the
same area and shape but a different configuration.4 Finally, the falcon altar
must face east, in prelude to a symbolic flight of the reconstructed god
towards the rising sun – a unique example of divine reincarnation by
geometric means.

Figure 1.1. Diagram of the Agnicayana fire altar. Frits Staal, ‘Greek and Vedic Geometry’, Journal of
Indian Philosophy 27, no. 1 (1999): 111 (image rotated).

Agnicayana is meticulously described in the appendices to the Vedas
dedicated to geometry, the Shulba Sutras, which were composed around
800 BCE in India, yet recording a much-older oral tradition.5 They narrate
that the rishi (vital spirits) created seven square-shaped purusha (cosmic
beings) which together composed a single body, and it is from this simple
configuration that the complex body of Prajapati evolved.6 The Shulba
Sutras teach the construction of other altars of specific geometric forms to
secure the auspices of gods. They suggest, for instance, that ‘those who



wish to destroy existing and future enemies should construct a fire-altar in
the form of a rhombus’.7 Beyond religious symbolism, the Agnicayana
ritual and the Shulba Sutras in general had, in fact, the function of
transmitting useful techniques for the society of the time, such as how to
plan a construction and to enlarge existing buildings while maintaining their
original proportions.8 Agnicayana exemplifies the originary social
materiality of mathematical knowledge but also the hierarchies of manual
and mental labour typical of a caste system. In the construction of the altar,
the workers are driven by rules which are traditionally possessed and
transmitted only by a specific group of masters. Aside from geometric
exercises, rituals such as Agnicayana taught a kind of procedural
knowledge which is not just abstract but based on continuous ‘mechanical’
drill, pointing once again to the role of religion as a motivation for
exactness and, at the same time, to spiritual exercises as a way of
disciplining labour.9

Agnicayana is a unique artefact in the history of human civilisation: it is
the most ancient documented ritual of humankind that is still practised
today – although, due to its complexity, it is performed only a few times in
a century.10 Across all this time, it has transmitted and preserved
sophisticated paradigms of knowledge, and because of its combinatorial
mechanism, it can be defined as a primordial example of algorithmic
culture. But how can one possibly interpret a ritual as ancient as
Agnicayana as algorithmic? One of the most common definitions of
algorithm in computer science is the following: a finite procedure of step-
by-step instructions to turn an input into an output, independently of the
data, and making the best use of the given resources.11 The recursive
mantras which guide workers in the construction site of the fire altar may
indeed resemble the rules of a computer program: independently of the
context, the Agnicayana algorithm organises a precise distribution of bricks
which results every time in the construction of the Syenaciti. Historians
have found that Indian mathematics has been predominantly algorithmic
since ancient times, meaning that the solution to a problem was proposed
via a step-by-step procedure rather than a logical demonstration.12

Similarly, the Italian mathematician Paolo Zellini has argued that the
Agnicayana ritual evidences a more sophisticated technique than simple
obedience to a rigid rule, namely the heuristic technique of incremental



approximation. It is known that Vedic mathematics, before other
civilisations, was familiar with infinitely large and infinitesimally small
numbers: ancient sutras already multiplied the positional numerals of the
Hindu system to large scales to signify the vast dimensions of the universe
(a speculative exercise that would be impracticable with the additive
systems of Sumerian, Greek, and Roman numerals, for instance). Vedic
mathematics was also familiar with irrational numbers, such as the square
root, which in many cases (such as √2) can only be calculated by
approximation. The mantras of the Shulba Sutras intone the most ancient
(and pedantic) explications of computational procedures (like to the so-
called Babylonian algorithm) to approximate square root results. Procedures
of approximation may appear cumbersome, weak, and imprecise compared
to the exactitude of our mathematical functions and geometric theorems, but
their role within the history of mathematics and technology is more
important than is commonly thought. In his history of the techniques of
incremental growth (which include the ancient method of gnomon, among
others), Zellini has argued that the ancient Hindu techniques of incremental
approximation are equivalent to the modern algorithms of Leibniz and
Newton’s calculus, and even to the error-correction techniques that are
found at the core of artificial neural networks and machine learning, which
constitute the current paradigm of AI (see chapter 9).13

To some, it may appear an act of misappropriation to read ancient
cultures through the paradigm of the latest technologies from Silicon Valley
or to study the mathematical component of religious rituals in an age of
rampant nationalism. However, to claim that abstract techniques of
knowledge and artificial metalanguages belong uniquely to the modern
industrial West is not only historically inaccurate but an act of implicit
epistemic colonialism towards the cultures of other places and other
times.14 Thanks to the contribution of ethnomathematics, decolonial
studies, and the history of science and technology, alternative forms of
computation are now recognised and investigated outside the Global North
hegemony and its regime of knowledge extractivism. Because of their role
in computer programming, algorithms are usually perceived as the
application of complex sets of rules in the abstract; on the contrary, I argue
here that algorithms, even the complex ones of AI and machine learning,
have their genesis in social and material activities. Algorithmic thinking and



algorithmic practices, broadly understood as rule-based problem-solving,
have been part of all cultures and civilisations.

Along these lines of inquiry, this chapter sketches a provisional history
of algorithms, broadly examining in turn (1) social algorithms, that is,
procedures that were embodied in rituals and practices, often transmitted
orally and not formalised into symbolic language; (2) formal algorithms,
that is, mathematical procedures to help calculation and administrative
operations as they are found, for instance, in Europe since the Middle Ages
and before that in India; and (3) automated algorithms, that is, the
implementation of formal algorithms in machines and electronic computers
starting with the industrial age in the West.

Archaeology of the algorithm

The idea of investigating ‘algorithms before computers’ first came,
unsurprisingly, from the field of computer science. In the late 1960s, the US
mathematician Donald Knuth authored the influential book The Art of
Computer Programming and gave important contributions to excavating the
deep time of mathematical techniques in essays such as ‘Ancient
Babylonian Algorithms’. In those years, Knuth’s mission was to systematise
the field of computer science and to make it into a respectable academic
discipline. The evidence of ancient algorithms was mobilised to stress that
computer science was not about obscure electronic apparatuses but part of a
long tradition of cultural techniques of symbolic manipulation. In this case,
however, the archaeology of the algorithm was pursued not to demonstrate
universalistic principles of thinking or the emancipatory potential of
learning across the history of civilisation, but for the specific interests of the
new classes of computer programmers and manufacturers:

One of the ways to help make computer science respectable is to show that it is deeply
rooted in history, not just a short-lived phenomenon. Therefore it is natural to turn to the
earliest surviving documents which deal with computation, and to study how people
approached the subject nearly 4000 years ago. Archeological expeditions in the Middle East
have unearthed a large number of clay tablets which contain mathematical calculations, and
we shall see that these tablets give many interesting clues about the life of early ‘computer
scientists’.15

Knuth observed that mathematical formulas that today would be defined as
algebraic or analytical were already described by the Babylonians through



step-by-step procedures, namely algorithms. These procedures were, of
course, formulated in the words of the common language and not yet in the
symbolic metalanguage of mathematics. Knuth’s research confirms the
hypothesis that procedure-based methods (what he called a ‘machine
language’) predated the consolidation of mathematics as a metalanguage of
symbolic representations:

The Babylonian mathematicians were not limited simply to the processes of addition,
subtraction, multiplication, and division; they were adept at solving many types of algebraic
equations. But they did not have an algebraic notation that is quite as transparent as ours;
they represented each formula by a step-by-step list of rules for its evaluation, i.e. by an
algorithm for computing that formula. In effect, they worked with a ‘machine language’
representation of formulas instead of a symbolic language.16

Knuth intended to liberate the algorithm from the age of computer science
and engineering in order to make it, retroactively, a broad subject for the
history of culture. This happened in the 1960s, when computer science was
still struggling, as the historian Nathan Ensmenger has highlighted, to
achieve the status of proper discipline in the United States. This
qualification became possible by establishing as its central concept the
algorithm, rather than information as happened in Europe (see the German
Informatik, the French informatique, and the Italian informatica as names
for computer science).17 This canonization of the algorithm is particularly
significant for the historians of science and technology because it proceeded
from within its original professional milieu: the operators of computing
machines, a new generation of mental workers, were up to write their own
history of technology – and obviously they did it according to the logical
form their work embodied.

The reconstruction of the prehistory of the algorithm (one may say its
‘archaeology’) has also been a resurgent concern in mathematics. Notably,
the French mathematician Jean-Luc Chabert has contributed an exemplary
synthesis that also ventures beyond the disciplinary borders of computer
science:

Algorithms have been around since the beginning of time and existed well before a special
word had been coined to describe them. Algorithms are simply a set of step by step
instructions, to be carried out quite mechanically, so as to achieve some desired result …
Algorithms are not confined to mathematics … The Babylonians used them for deciding
points of law, Latin teachers used them to get the grammar right, and they have been used in
all cultures for predicting the future, for deciding medical treatment, or for preparing food …
We therefore speak of recipes, rules, techniques, processes, procedures, methods, etc., using



the same word to apply to different situations. The Chinese, for example, use the word shu
(meaning rule, process or stratagem) both for mathematics and in martial arts … In the end,
the term algorithm has come to mean any process of systematic calculation, that is a process
that could be carried out automatically. Today, principally because of the influence of
computing, the idea of finiteness has entered into the meaning of algorithm as an essential
element, distinguishing it from vaguer notions such as process, method or technique.18

Also in this reading, the algorithm does not appear to be the most recent
technological abstraction but a very ancient technique – one that predates
many tools and machines that the human mind has designed. These efforts
of historicisation invite a reconsideration of the algorithm, then, as a
fundamental cultural technique of humankind, which gradually emerged
from collective practices and rituals temporally very close to the constituent
and primordial traits of all civilisations. The algorithm should be added, in
summary, to the list of techniques that the historian of culture Thomas
Macho compiled in an often-quoted passage:

Cultural techniques – such as writing, reading, painting, counting, making music – are
always older than the concepts that are generated from them. People wrote long before they
conceptualized writing or alphabets; millennia passed before pictures and statues gave rise to
the concept of the image; and until today, people sing or make music without knowing
anything about tones or musical notation systems. Counting, too, is older than the notion of
numbers. To be sure, most cultures counted or performed certain mathematical operations;
but they did not necessarily derive from this a concept of number.19

The research on cultural techniques (in German, Kulturtechniken, which
can also be translated as ‘techniques of civilisation’) has stressed the role of
material practices in the making of all the symbolic forms of civilisations.
This open-minded and pluralistic view, however, often neglects to study the
causes of this evolution towards abstraction, resulting in a culturalist
interpretation of what are more profound phenomena. Chabert, in his
history of algorithms, for example, relates the rise of techniques of
calculation to economic needs: ‘The basic arithmetic operations of the
elementary school, multiplying and dividing, appear to have derived from
extremely early economic needs, certainly earlier than the emergence of
civilisation using writing.’20 Although it is always difficult to generalise
historical findings about the remote past, economic problems – such as
conditions of lack or surplus of resources – appear to be at the origins of
counting and mathematical techniques.21 It is worth remembering, with no
intention of reviving ancestral famines, that the word ‘number’ comes from
the Latin numerus, or ‘portion of food’.



Well before the institution of mathematical and geometric disciplines,
ancient civilisations were already large ‘machines’ of social segmentation,
marking human bodies and territories with abstractions that would remain
operative for millennia. It is known and repeated that one of the first
recorded censuses of the population, organised by the Babylonians, took
place around 3800 BCE, but history records that these ‘cultural techniques’
were also inhuman and ruthless. Drawing on historian Lewis Mumford and
his account of ancient societies as ‘megamachines’, Gilles Deleuze and
Félix Guattari enumerated other techniques of abstraction than number on
which social order was based. They argue that in ancient civilisation, the
power to control ‘productive forces … resides in these operations: tattooing,
excising, incising, carving, scarifying, mutilating, encircling, and
initiating’.22 Numbers and counting tools were components of these
primitive abstract machines that forged human civilisations through
territorialisation and segmentation. Numbers, as much as abstract rules and
heuristic practices, were key tools in the administration of ancient societies,
but they were not invented from nothing: they materially emerged as a form
of power through labour and rituals, through discipline and drill.

This intrinsic relation between mathematical abstractions and material
life was not overlooked even by a neo-Kantian philosopher like Ernst
Cassirer, who has exercised quite an influence on cultural studies in
German-speaking countries. According to Cassirer, the ‘symbolic form’ of
number emerged from the relation of the human body with its environment
and the contingent use of the body as the first medium of calculation: ‘It is
through material enumerable things, however sensuous, concrete and
limited its first representation of these things may be, that language
develops the new form and the new logical force that are contained in
number.’23 Analysing the perception of space and time, Cassirer traced the
origin of numerical abstractions to the rhythmical activities of work.
Following Karl Bücher’s seminal book Arbeit und Rhythmus (1896) and
other anthropological studies, Cassirer remarked that the symbolic form of
number grew out of the custom of work songs – that is, singing to sustain
the rhythm of work:

Attempts have been made to trace the beginnings of poetry back to those first primitive work
songs in which for the first time the rhythm felt by man in his own physical movements was,
as it were, objectified … Every form of physical labor, particularly when performed by a
group, occasions a specific coordination of movements, which leads in turn to a rhythmic



organization and punctuation of work phases … Grinding and rubbing, pushing and pulling,
pressing and trampling: each is distinguished by a rhythm and tone quality of its own. In all
the vast variety of work songs, in the songs of spinners and weavers, threshers and oarsmen,
millers and bakers, etc., we can still hear with a certain immediacy how a specific rhythmic
sense, determined by the character of the task, can only subsist and enter into the work if it is
at the same time objectified in sound … In any case, language could acquire consciousness
of the pure forms of time and number only through association with certain contents, certain
fundamental rhythmic experiences, in which the two forms seem to be given in immediate
concretion and fusion.24

This study can be taken as a rejoinder to the Platonic numerology that is
central to the history of music: before numbers were used to measure the
proportions of rhythm, the rhythm of work contributed to the invention of
numbers. At the end, these findings cast a different light on the history of
mathematics, so much that one could suspect, at this point, that algorithmic
practices are even older than the concept of number itself.

Tools for the construction of mathematical ideas

Numbers are often considered as something given, originary and elemental,
not composed of anything else and not resulting from any prior conceptual
fabrication. Numbers appears to be self-explanatory, eternal, and not
constructed. Such a Platonic and intuitionist view of the concept of number
has been criticised by historians of mathematics, who are particularly
concerned with explaining how techniques of numeration arose and
evolved. Archaeologists, especially, are inclined to suggest that the
institution of number cannot be an a priori category, as human activity with
materials and symbolic tools testifies to its gradual evolution: counting
appeared to have emerged, as already mentioned, from the need to calculate
and solve practical problems, such as the equal distribution of land and
natural resources in the population.

Among the archaeologists of abstraction we encounter the German
historian of science Peter Damerow, who extensively studied, among other
artefacts, ancient Babylonian clay tablets that were used as counting tools.
Damerow came to the conclusion that the idea of number is not a form of a
priori knowledge but ‘subject to historical development’.

Reflections on numbers and their properties led already in antiquity to the belief that
propositions concerning numbers have a special status, since their truth is dependent neither
on empirical experience nor on historical circumstances. In a historical tradition extending



from the Pythagorean through the Platonic tradition of Antiquity, Late Antiquity and the
Middle Ages, further through the rationalism and the critical idealism of Kantian and neo-
Kantian philosophy to the logical positivism and constructivism of the present, this belief
has been considered proof that there are objects of which we can gain knowledge a priori.
Like a recurring leitmotif, the conviction that numbers are by nature ahistorical and universal
is woven through the history of philosophy. A variety of reasons have been proposed to
explain this puzzling phenomenon. The historian, on the other hand, is confronted with the
fact that numerical techniques and arithmetic insights have a history that is, at least on its
surface, in no way different from other achievements of our culture. In view of the variety of
historically documented arithmetical techniques, it is scarcely possible to dismiss the
assumption that the concept of number – in the same way as most structures of human
cognition – is subject to historical development, which in the course of history exposes it to
substantial change.25

Engaging with the findings of archaeology, moreover, Damerow realised
that ‘the emergence of numbers appears as the result of manifold learning
processes’.26 Learning became a central notion in Damerow’s research,
through which he explained the making of human civilisation and its
evolution. For Damerow, learning is a process of interaction of humankind
with nature and the world, mediated by labour, tools, and language in a
continuous process of abstraction. Learning, however, is not a process of
abstraction for the sake of abstraction but a collective means of
emancipation and empowerment. How does this social process of learning
take place?

Damerow argued that learning is based on the construction of ‘mental
models’ that fundamentally represent and internalise external actions.27 On
top of these internalised mental models, further levels of abstraction can be
built in a progressive scaffolding of ‘meta-cognitive constructs’.28 This
continuous scaffolding of abstractions is a form of the emancipation of
reason, but it happens that some levels are eventually perceived as
metaphysical and separated from others. According to Damerow, the higher
levels of the cognitive scaffolding create the illusion of dematerialised
abstractions and a priori categories such as the concept of number.
However, what is decisive in this theory is not simply the explanation of the
a priori illusion but rather how ‘mental operations … reflect actions on real
objects’ and, vice versa, how tools help constructing mental models:

Logico-mathematical concepts are abstracted not directly from the objects of cognition, but
from the coordination of the actions that they are applied to and by which they are somehow
transformed. According to this assumption the emergence of mental operations of logico-
mathematical thought is based on the internalisation of systems of real actions. The
internalised actions are the starting-point for meta-cognitive constructions, through which



they become elements of systems of reversible mental transformations which, following
Piaget’s terminology, we will call here ‘operations’. Metacognitive constructs such as the
concept of number that are generated by reflective abstractions can thus be understood as
internally represented invariables of mental operations which reflect actions on real objects.
This explains the puzzling a priori nature of constructions such as the number concept.29

To explain the formation of the concept of number throughout history,
Damerow suggested a scaffolding of semiotic and cognitive models that
progressively unfolded from practices of counting (which are heuristic and
non-formalised, such as reckoning with fingers), to systems of numeration
(which represent quantities in a matrix of symbols), to techniques of
computation (which express algorithms or procedure to solve problems by
manipulating symbols), and eventually to number theory (namely arithmetic
as a formal discipline). This process is not linear but unfolds, according to
Damerow, through an alternate movement of representation (the use of
objects and signs as symbols of other objects, signs, and ideas) and
abstraction (problem-solving).

Applying the idea of reflective abstraction that combines both Hegel’s
dialectical logic and Jean Piaget’s genetic epistemology, Damerow sketched
progressive stages of symbolic representation (see fig 1.2), in which the
passage from one order of representation to the following occurs via the
solution of a problem. According to Damerow,

First order representations are representations of real objects by symbols or models which
permit the performance of essentially the same actions or operations with these symbols as
can be performed with the real objects themselves … Second and higher order
representations are representations of mental objects by symbols and symbol transformation
rules which correspond to mental operations belonging to the cognitive structures
constituting the mental objects.30



Figure 1.2. The reflective structure of abstraction. Peter Damerow, Abstraction and Representation
Berlin: Springer, 2013, 379.

The concept of number developed, then, through cycles of symbolic
representation and abstraction. First, processes of quantification and
comparison that were based on equivalence without involving counting.
Counting then emerged as a context-dependent activity that utilised aids
such as fingers, stones, and so forth. Thereafter, these counting devices
were replaced by context-dependent symbols (such as the signs on the
bullae for trading in ancient Mesopotamia). Subsequently, context-free
symbols were introduced, namely numbers in the modern sense. Finally,
arithmetic emerged as a discipline to describe numbers and operations with
natural language words, eventually to be replaced by new symbols
themselves.31

To understand if such analysis can also be applied to the algorithmic
form as a practice of problem-solving, it is necessary, at this point, to clarify
Damerow’s idea of abstraction. Following Hegel and Piaget, Damerow



understood abstraction as a process in which materiality and reflection, that
is tools and cognition, are mutually imbricated and mutually evolve:

The concept [of reflection] was introduced [by Hegel] in the Jenaer Realphilosophie to
distinguish labor as ‘reflective activity’ from activity as ‘pure mediation’, as the mere
satisfaction of a desire by means of the destruction of its object. What distinguishes labor as
‘reflective activity’ from activity as ‘pure mediation’ is the endurance of its material means,
of its tools, in which activity as the unity of ideal purpose and material object has materially
objectified itself … The unity of the sensory given and mediating activity constructed in
Hegel’s logic, the mediated immediacy as the result of reflection, not only constitutes a
hypothetico-theoretical construct, but this unity is actually created in the material means of
the objective activity in a myriad of forms.32

For Damerow abstraction is not about isolating the most prominent features
of a given structure but about producing new knowledge in relation to a
problem to solve: abstraction is not just an ‘elegant solution’ to a problem
but ‘an activity directed towards some end or goal’, which includes the
contingent understanding of the environment:33

It is a common view that abstraction means refraining from using the information available
on a given real object, and instead isolating certain properties and dealing with these
independently. But this concept of abstraction reveals itself as unsatisfactory if it is used to
conceptualize the development of mathematical thinking. Abstraction in this sense does not
explain that outcome of new knowledge which obviously does result from mathematical
thinking. Furthermore, this concept of abstraction makes it impossible or at least difficult to
understand why certain abstractions turn out to be very useful but the huge mass which
might be produced by arbitrarily isolating properties of mathematical objects would only
result in nonsense … To understand abstraction essentially means understanding what has to
be abstracted rather than merely knowing how it has to take place. To understand the
abstraction leading to an elegant solution of the problem means understanding how the
solution can really be found.34

Abstraction always operates within given material constraints and through
them: symbols, tools, techniques, and technologies are conceived and
realised in relation to limited resources of matter, energy, space, time, and
so on. The reality which abstraction is struggling with is not the idealised
space of Platonic ideas but the actual living world, made of force fields and
conflicts. In this sense, abstraction is also part of the larger social
antagonism.

Importantly, material constraints give an impetus to expand the reach of
abstraction beyond its original field. Together with his colleague Wolfgang
Lefèvre, Damerow extended the historical epistemology of mathematics to
the relation of science in general with tools and instruments. Their



understanding of tools is, at one and the same time, contingent and
speculative – in short, dialectical. Tools are not just means to an end but
means that exceed the purpose of their initial design:

Tools determine whether goals anticipated mentally can be realised. In that sense tools are
never just what they actually are. Rather, they represent the potential of realizing
intellectually anticipated goals, which is to say, they represent ideas as real possibilities.
Their application mediates between possibility and reality. The use of tools primarily serves
the purpose for which they were produced. But tools are more general than particular
purposes, and the accumulated experience acquired in the course of their use leads to
knowledge about possibilities capable of being realized and about relationships between
goals and means under various conditions of realization. Thus, the primary form in which
knowledge about natural and social relationships arising from the labor process is
represented is the form of rules for the appropriate use of tools.35

In this understanding, the speculative process starts with labour that invents
tools and technologies which, subsequently, project new ontological
dimensions and scientific fields (a canonical example is the invention of the
steam engine that engendered the discipline of thermodynamics, rather than
the other way around; see chapter 3). Damerow and Lefèvre advance a
political epistemology that acknowledges the constraints of historical
forces, namely the control of resources and population, economic
production and capital accumulation, the rise of wars and social conflicts,
and, because of all of this, the development of new tools, techniques,
technologies, and eventually science. They acknowledge all these forces
within the category of labour, through which humans transform nature and
produce new knowledge about it.36 Science in general, as much as the
concept of number in particular, is a projection of the use of material tools:

The development of science depends on the development of its material tools … The key of
understanding the growth of scientific knowledge consists in the fact that the knowledge to
be gained by using a new tool exceeds the cognitive preconditions of its invention. The
reason for this is due to the fact that the tools of science like tools in general are material
tools: When using a material tool, more can always be learned than the knowledge invested
in its invention.37

Along this historical overview of material abstractions, one can easily
imagine also the concept of algorithm emerging as the result of a dialectical
process of reflection with objects and tools. The method of the algorithm –
the resolution of a problem by step-by-step instructions – is an abstraction
that like many others emerged from the troubles of this world.38



From counting tools to algorithms for calculation

The English term ‘algorithm’ is circa eight centuries old. It derives from the
medieval Latin term algorismus, which referred to the procedures for
executing the basic mathematical operations with the Hindu–Arabic
numerals. In the Europe of the Middle Ages, thanks to the trading routes
with the Arab world, the limited system of Roman additive numerals came
gradually to be replaced by the more versatile Hindu–Arabic positional
system, which was more practical for complex operations on large numbers
and has since become the planetary standard. The Latin term algorismus is
found, for instance, in the 1240 poem ‘Carmen de Algorismo’ by Alexandre
de Villedieu – a manual of calculation techniques that was composed in
rhyming verse as an aid to memorise such procedures. A book printed in
Venice in 1501 and attributed to the thirteenth-century monk Johannes de
Sacrobosco bears the title Algorismus Domini and explicates hand
calculation using Hindu numerals also with diagrams.

Only recently has it been established that algorismus is a Latinisation of
the name of the Persian scholar Muhammad ibn Musa al-Khwarizmi, head
librarian at the House of Wisdom in Baghdad, who authored a book on
calculation with Hindu numerals around 825 CE. Al-Khwarizmi’s original
in Arabic has been lost, but in the twelfth century at least four Latin
translations circulated under different titles: a manuscript at Cambridge
University Library bears the incipit ‘DIXIT algorizmi’ (meaning: ‘so spoke
Al-Khwarizmi’), while another was given in 1857 the title Algoritmi de
numero Indorum by Italian mathematician Baldassarre Boncompagni.39 It is
through various transliterations in Romance languages, such as French and
Spanish, that the English term ‘algorithm’ has reached contemporary
mathematics and computer science. Al-Khwarizmi’s book helped to
introduce the positional Hindu numerals to the West, yet merchants, such as
the Italian mathematician Fibonacci, who travelled frequently across the
Mediterranean, probably learned the system more through commercial
exchanges and practice than through books.

In terms of mathematical conventions, the adoption of the term
‘algorithm’ in the West marked the shift from the additive to the positional
system of numeration. This shift was both technical and economic, as it was
related to the acceleration of commercial exchanges across Europe and the
Mediterranean that demanded a better system of accounting. The decimal



positional system made it possible to write numbers more concisely and
sped-up calculations. In Italy, Florentine and Venetian merchants were the
first to adopt the Hindu numerals, favoured for their greater versatility in
commercial transactions and in handling capital’s increasingly large figures.
A drawing from the 1503 book Margarita philosophica, edited by the
German monk and polymath Gregor Reisch, shows the dispute between
abacists (who were still using the Roman system and the abacus) and the
new algorists (who adopted the Hindu system and its algorithms to make
calculations on paper with a stylus). The allegory of Arithmetica supervises
the dispute, clearly deciding in favour of the algorist, her cloth covered with
the new numerals (see fig. 1.3). Later, the term ‘algorithm’ was adopted by
the scholars of European high culture, such as Leibniz, who used it to
define his method of differential calculus.40 ‘Algorithm’ was broadly
defined by D’Alembert’s Encyclopédie as an

Arab term, used by several authors, and particularly by the Spanish to mean the practice of
algebra. It is also sometimes taken to mean arithmetic by digits … The same word is taken to
mean, in general, the method and notation of all types of calculation. In this sense, we say
the algorithm of the integral calculus, the algorithm of the exponential calculus, the
algorithm of sines, etc.41



Figure 1.3. Allegory of Arithmetic. Gregor Reisch, Margarita Philosophica, 1503.

The techniques and tricks for doing calculations by hand that are still taught
in school to this day are a set of algorithms for the manipulation of



numerical signs. They possess a recursive structure that can handle infinite
and approximate digits, as occurs in the simple division of the prime
numbers: 2/3 = 0.666666666 … The simple continuous form of this fraction
shows that even rational numbers cannot be calculated and expressed
without the help of an algorithm. More precisely, even the way in which
numbers are written in a system of numeration constitutes an algorithm – in
this case, an algorithm to represent simple quantities. For instance, when we
write the number 101 in Hindu numerals, this simple sign should be
translated as:

Consider a linear sequence of positions to be occupied by symbols of quantity running from
right to left. Each position represents incrementally a power of ten and can be filled by one
of the ten units: 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. The first position represents ten to the power of
zero (that is, normal units), the second position ten to the power of one (ten), the third
position ten to the power of two (hundred), and so on. The value of a number represented in
this way is given by the addition of each unit after being multiplied to the power of ten,
represented by the occupied position. When numbers are expressed in this way, the scale of
the powers of ten is not explicitly stated but remains implicit.

The number 101, therefore, is equal to: (1 × hundred) + (0 × ten) + (1 ×
one). This verbose explanation of the decimal system in natural language
can be easily adapted to represent the binary system by simply switching
the power of ten to the one of two – that is, by changing one rule in the
general procedure of numeration. In the binary system, the number 101
comes to signify a different quantity:

Consider a linear sequence of positions to be occupied by symbols of quantity running from
right to left. Each position represents incrementally a power of two and can be filled by one
of the two units: 0 or 1. The first position represents two to the power of zero (that is, normal
units), the second position two to the power of one (two), the third position two to the power
of two (four), and so on. The value of a number represented in this way is given by the
addition of each unit after being multiplied to the power of two, represented by the occupied
position. When numbers are expressed in this way, the scale of the powers of two is not
explicitly stated but remains implicit.

In this case, the number 101 is equal to: (1 × four) + (0 × two) + (1 × one),
that is, 5 in decimal notation. In both of these verbose paraphrases, the
words of natural language are not used to explain but to encode rules for the
construction of numbers with a procedure of step-by-step instructions.
These paraphrases make visible the procedure of the systems of numeration
which are taught at school mostly through exercise and usually remain
unexpressed. Such pedantic rehearsal of decimal and binary numerals,
however, is helpful to say something non-pedantic: all systems of



numeration appear to be algorithmic by constitution. As any word implies a
grammar, any number hides an algorithm – that is, a procedure for
representing quantities and for performing operations with quantities. In
conclusion, all numbers are algorithmic numbers as they are manufactured
by those algorithms that are the systems of numerations. Numerals count
nothing (so to speak); they are simply position holders in a procedure – an
algorithm – of quantification.

The mechanisation of the algorithm

Algorithms for hand calculation were mechanised gradually. In
seventeenth-century Europe, natural philosophers such as Pascal and
Leibniz designed hand calculators to automate the four basic operations
with the decimal system. These devices were not at all cabinet curiosities
but signalled more profound epistemic changes. At the time, modern
thought had already developed in close relation to machines, to the point
that mechanical thinking can be recorded having an influence on
philosophical thinking too. Descartes’s famous ‘Method’ of reasoning, for
instance, looked quite ‘mechanical’ in its emphasis upon the decomposition
of a problem into simpler elements. According to the Polish economist
Henryk Grossmann, it was not by accident that Descartes conceived his
rational method while designing tooling machines himself. But Grossmann
noted also a more profound relation between mathematics and machines:
‘every mathematical rule has [a] mechanical character that spares
intellectual work and much calculation.’ This economic principle – to save
time, work, and resources – remains a key aspect of algorithmic thinking
and practices as they have been illustrated so far.42

As the following chapter will show, in the context of the industrial
economy of the early nineteenth century, the first computing algorithm to
be mechanised was Gaspard de Prony’s method of difference to calculate
large logarithmic tables, which Charles Babbage implemented in the
Difference Engine. The Difference Engine was designed to embody only
this type of algorithm, but Babbage’s envisioned also a programmable
machine – the Analytical Engine – which could express different kinds of
equations (although it was never realised). The first computer algorithm or
‘program’ is considered to be Ada Lovelace’s ‘diagram for the computation



of Bernoulli numbers’ that was tentatively written for the Analytical
Engine. Babbage’s calculating engines represent the point of convergence
of calculation algorithms and industrial automation, although they severely
struggled among other difficulties, to represent the decimal system in
mechanical gears.43

In the twentieth century, algorithms for calculation were successfully
automated thanks to the flexibility of the binary system.44 Binary numerals
are much easier to implement in an electric device than decimals into a
mechanism, because an electric current’s status that is on or off can directly
represent the digits 0 and 1. In this way, the execution of addition and
subtraction, for instance, is extremely simplified. Technically, binary
operations started to be adopted and encoded in electric machines following
the 1938 publication of US mathematician Claude Shannon’s master’s
thesis ‘A Symbolic Analysis of Relay and Switching Circuits’.45 Shannon
proposed for the first time to use the binary properties of electrical switches
to represent not simply binary numbers and their operations, but
propositional logic and, specifically, the Boolean logical operators AND,
OR, and NOT.

After World War II, the binary code, the von Neumann architecture, and
the engineering of efficient logic gates in microchips made possible the
construction of fast computers and the formalisation of computer algorithms
of larger size and higher complexity. For the first time in history, sequences
of numerals came to represent not just quantities but instructions.46 The so-
called ‘computer revolution’ was not just about the use of binary numerals
(binary digits, or bits) to encode human language and analogue content
(digitisation) but about accelerating mechanical computation through binary
logic (or Boolean logic). Contrary to the common view that stresses only
the separation of hardware and software, digital computing is actually the
imbrication, in the same medium of information and instruction, of binary
numerals and Boolean logic – one as a complementary form of the other. In
other words, with digital computing, the algorithm of numeration (binary
numerals) and the algorithm of calculation (binary logic) have almost
become one and the same thing.

In the digital age, the algorithm has risen to the role of an abstract
machine (under the different denominations of program, software, code, and
so forth), which is used to control electronic computing machines. As



mentioned at the beginning of this chapter, the definition of ‘algorithm’
which is the most familiar in contemporary times is the one of computer
science: ‘a finite procedure of step-by-step instructions to turn an input into
an output, independently of the data, and making the best use of the given
resources’.47 The abstraction of logic from content is one of the key aspects
of technical and cognitive development: as with other techniques of
abstraction, an algorithm has to operate independently of environmental
constraints and the origin of data. This chapter has questioned, however,
this reading of abstraction as separation from the world and its historical
developments. In fact, the advent of machine learning has turned this static
definition of algorithm upside down: machine learning algorithms have
became adaptive, and from rigid sets of rules now they ‘learn’ rules from
data.

The canonical definition describes the algorithm as the application of
rigid rules, top down, on some input data. Data do not affect the behaviour
of the algorithm: they are simply passive information to be processed by
rules. On the contrary, machine learning algorithms change their internal
rules (called parameters) according to the input data. As such, data are no
longer passive, so to speak, but become active information that influences
the parameters of the step-by-step procedure which is, then, no longer
strictly predetermined by the algorithm. The breakthrough of machine
learning is exactly about this shift: algorithms for data analytics become
dynamic and change their rigid inferential structure to adapt to further
properties of data – usually logical and spatial relations. The canonical
example is an artificial neural network for pattern recognition that changes
the parameters of its nodes according to the relations among the elements of
the visual matrix. In this respect, the structure of the most recent AI
algorithms is not different and distant from ancient mathematical practices
that emerged by the continuous imitation of configurations of space, time,
labour, and social relations.

As the historian of science Jürgen Renn has noted, after Damerow,
machine learning algorithms are nothing ‘superhuman’ but part of the cycle
of internalisation and externalisation of cognitive functions that belongs to
all cultural techniques:

After all, machine learning algorithms … are simply a new form of the externalization of
human thinking, even if they are a particularly intelligent form. As did other external
representations before them, such as calculating machines, for example, they partly take over



– in a different modality – functions of the human brain. Will they eventually supersede and
even displace human thinking? The crucial point in answering this question is not that their
overall intelligence still lags far behind human and even animal intelligence, but that they
can play out their full potential only within the cycle of internalization and externalization
that … is the hallmark and driving force of cultural evolution.48

In a similar way, this introductory chapter served to see the algorithm
concept in perspective – in its historical context as well as in the long
evolution of knowledge systems. In short, it was, firstly, the mercantile
acceleration of the late Middle Age, and, secondly, the rise of the
information society that contributed to formalise the algorithm as it is
known today. For a linguistic coincidence, the medieval term algorismus
marked the passage from the additive to the positional system of
numeration, while the recent use of the term ‘algorithm’ has marked the
passage from decimal to binary numerals. These were not simply formal
and technical shifts but also economic ones; after all, Hindu–Arabic
numerals and algorithms for hand calculation were adopted to simplify
accounting and mercantile transactions, while binary numerals were
adopted because they could be implemented in electrical circuits and logic
gates to accelerate industrial automation and state administration. Just as the
first transition is related to early mercantilism, so is the second to industrial
capitalism – particularly in its demand to speed up communication
technologies and automate mental labour.49



PART I 
The Industrial Age
 



2
Babbage and the Mechanisation of Mental
Labour
 

We must remember that another and a higher science, itself still more boundless, is also
advancing with a giant’s stride … It is the science of calculation – which becomes
continually more necessary at each step of our progress, and which must ultimately govern
the whole of the applications of science to the arts of life.

Charles Babbage, On the Economy of Machinery and Manufactures,
18321

Computation as division of labour

In early nineteenth-century England, ‘computer’ was not the name of a
machine but of a human – namely an office clerk, often a woman, who had
to make tedious calculations by hand for the government, the Astronomical
Society, or the Navy. At times ‘computers’ were also working from home,
receiving stacks of numbers to calculate and sending back results by mail:
this was literally the first historical occurrence of a computing network that
took the form of domestic labour and probably involved further family
members. With the aim of streamlining this time-consuming and error-



prone process, the polymath Charles Babbage had the idea of replacing the
repetitive work of many ‘computers’ with an automated machine powered
by steam. Henry Colebrooke, presenting Babbage with a gold medal at the
Astronomical Society of London in 1823 for the invention of the Difference
Engine, declared:

In other cases, mechanical devices have substituted machines for simpler tools or for bodily
labour … But the invention to which I am adverting … substitutes mechanical performance
for an intellectual process … Mr. Babbage’s invention puts an engine in place of the [human]
computer.2

Babbage’s Difference Engine, celebrated as the precursor of modern
computers, was born out of a business ambition – to automate the
calculations of logarithms and sell error-free logarithmic tables, which were
crucial in astronomy and for maintaining British hegemony in maritime
trade. Among other instigators, it was the problem of the longitudinal
calculus in open sea that gave a special impetus to mechanised
computation. Small mechanical calculators already existed, but they were
not automated and solved only the basic mathematical operations. Babbage
had the idea of connecting a complex logarithmic calculator to the
continuous motion provided by steam engines, so as not to have just a
calculating device, but a calculating engine that could establish the business
of calculation at an industrial scale – with the fantasies of unbounded
performance and unfettered economic growth that the novel word ‘engine’
carried at the time. The idea of the automatic computer, in the contemporary
sense, emerged out of the project to mechanise the mental labour of clerks
rather than the old alchemic dream of building thinking automata –
although the latter narrative would often be used, in the nineteenth century
as much as in the century of corporate AI, to masquerade the former
business.3

Precisely what kind of ‘intellectual process’, or mental labour, was
Babbage aiming to mechanise? If we are to understand the limitations and
potentialities of computation, this is a key clarification, without which even
the definition of AI itself can only amplify misunderstandings. The first
kind of mental labour to be mechanised was hand calculation – a specific
skill that persisted until the model of the Turing machine, which was
envisioned itself in the form of a human typist (a ‘computer’) reading and
writing figures on a tape, as in a telegraph station. As chapter 9 will show



by following a different genealogy of computation and AI, this was not to
be the case with artificial neural networks for pattern recognition, which
aimed to automate not hand calculation but the labour of perception and
supervision.

Babbage’s Difference Engine was a peculiar artefact. It was not a
computer in the contemporary sense, because it did not distinguish software
from hardware, instruction from information (fig 2.1). As it was at the same
time both hardware and software, the Difference Engine appears
aesthetically intriguing to contemporary eyes: its brass gears and rotating
cylinders physically embodied a single algorithm, French mathematician
Gaspard de Prony’s ‘method of differences’, which was used to abbreviate
the calculation of square numbers and logarithms. The Difference Engine
was also not a computer in the contemporary sense, because it was not a
programmable device: the title of an industrial machine featuring an
independent input for information belongs to the more modest Jacquard
loom.4 The Difference Engine prototype was never finalised, while the
Jacquard loom was produced in thousands of exemplars and became a
driver of the industrial age. The Jacquard loom set a standard for
information storage – the punched card – which IBM would maintain with
little to no variation until the twentieth century.5 Moreover, the first ‘digital
picture’ – that is, an image described by a numerical file – happened to be
another textile artefact: an 1839 portrait of Jacquard himself that was woven
using 24,000 of these punched cards.6 Babbage kept a copy of Jacquard’s
portrait in his studio and adopted the punched card as an input format for
another unrealised prototype – the Analytical Engine – whose design,
unlike its precursor, theoretically separated information from instruction
and could evaluate different types of equation.



Figure 2.1. Scheme for the implementation of de Prony’s algorithm as division of labour. Lorraine
Daston, ‘Calculation and the Division of Labor, 1750–1950’, Bulletin of the German Historical

Institute 62 (Spring 2018): 11.

The Difference Engine was not merely the invention of Babbage’s lone
speculative mind. As Simon Schaffer has noted, ‘places of intelligence’
across England assisted Babbage’s experiments with mechanical
computation and were ultimately the source of his ‘machine intelligence’.7
Schaffer remarks that Babbage had a more intimate relation with the
industrial workshops as a locus of knowledge than with the universities,
which, at the time, offered only conservative and notional curricula.
Whereas the hagiographies still depict him as a solitary genius, Babbage
was in fact deeply engaged in the industrial milieu of the age and in the
debates of the emerging discipline of political economy. In fact, he authored



one of the most influential industrial manuals of the time: On the Economy
of Machinery and Manufactures (1832).

That the applied division of labour, rather than abstract mathematics, is
the ‘inventor’ of automated computation is also confirmed by the opening
of Babbage’s book: ‘The present volume may be considered as one of the
consequences that have resulted from the Calculating-Engine, the
construction of which I have been so long superintending.’8 This is
historical evidence that, as an expression of the division of labour,
computation watched over the unfolding of industrial capitalism from its
very outset, rather than being a product of its latest developments. While
Babbage tried to convince his reader that the first manual ever published on
the management of industrial production was inspired by the project of
automated computation, a materialist historian would scrutinise such auto-
mythography. Was it not, rather, the issue of labour organisation and
insubordination which prompted the invention of new techniques of
discipline and, therefore, urged Babbage to delve into the furnaces of
industrial Europe?

Reckoning with clocks

The specific impetus for the mechanisation of mental labour and the
invention of automated computation in England came from the need for
precise logarithmic tables that, in an age of aggressive colonial expansion,
were crucial to keeping orientation along maritime routes. Logarithmic
tables, used to calculate the longitude in open sea, were highly unreliable
because of human errors, which caused several shipwrecks and large
commercial damages. The hagiographical anecdotes report that Babbage,
mulling over the logarithm books and staring at their numerous errors,
exclaimed: ‘I wish to God these calculations had been executed by steam.’9

The first project to accelerate the calculation of logarithmic tables, however,
took place not in England but in France, where in 1791 the revolutionary
government was engaged in reforming the official measuring system
towards the metric system, investing in what Lorraine Daston (to draw an
analogy with today’s ‘big data’) calls ‘big calculation’.10 Pursuing an
ambitious plan to make the decimal system the standard for angular
measurements, the government asked Gaspard de Prony to design the



division of the square angle with 100 rather than 90 degrees – a project
which required the logarithmic translation of the old radial fractions into
new ones. Though the plan of angular reform failed, and the millennia-old
Sumerian partition of time remains a global standard to this day, the attempt
would give momentum to the birth of automated computation.

The Scottish economist Adam Smith wrote a famous account of the
division of labour in pin making in The Wealth of Nations. Smith’s picture
of the division of labour inspired de Prony, who designed accordingly a sort
of collective algorithm for the calculus of logarithms. De Prony conceived a
workflow that was organised as a social pyramid: at the top, he placed a
class of mathematicians who would formulate the problem and pass it on to
a second class of ‘algebraists’; they would then prepare simple operations
and data for a third class of human computers who would perform all of the
actual calculations on paper sheets, then send them back to their superiors
(see fig. 2.2). Students, often women, and sometimes ‘a large number of
unemployed hairdressers were used to fill out the numbers on the sheets by
adding and subtracting’.11 De Prony’s algorithm applied the aforementioned
method of differences, which is based on the fact that the difference
between the squares of consecutive numbers remains constant and the
interpolation of following squares can be easily reached by simple addition
and subtraction in place of complex multiplication.12





Figure 2.2. Design for the implementation of de Prony’s algorithm into a mechanism. Charles
Babbage, On the Economy of Machinery and Manufactures, London: Charles Knight, 1832, 161.

Babbage had the idea of replacing the third class of workers of the
calculating pyramid with a machine, as they were repeating tedious tasks of
additions and subtractions of a simple difference. Eventually, the method of
differences would provide the algorithm and the name for Babbage’s
machine: the Difference Engine. As mentioned above, at the time,
mechanical calculators for basic operations already existed and were
propelled by hand. Babbage had the idea of implementing this specific
algorithm into a mechanical device and applying a steam engine as a source
of motion to turn the calculation of logarithmic tables into an industrial
business of scale. Once the Difference Engine was set in motion, it was
supposed to calculate a whole logarithmic table without stopping.
Babbage’s project was a fascinating contrivance that sought to give
unbounded computational power to cogs and wheels made of brass and
wood. Today, the use of steam as a source of energy for calculation may
endure only in the science fiction genre steampunk, but in Babbage’s time it
was a venture into a world very different than the one we currently inhabit –
one where automated computation would run without electricity.

Babbage’s first prototype of the Difference Engine, modestly, was still
propelled by hand. Interestingly, the first device that would take the role of
translating de Prony’s algorithm for hand calculation into ‘matter’ was a
familiar one: the clock (see fig. 2.2). Babbage published the general concept
of the Difference Engine in the often-forgotten chapter, ‘On the Division of
Mental Labour’, in his 1832 book. There, he proposed ‘what may, perhaps,
appear paradoxical to some of our readers – that the division of labour can
be applied with equal success to mental operations, and that it ensures, by



its adoption, the same economy of time’.13 Following de Prony’s method of
differences, Babbage deconstructed the calculation of logarithmic tables in
modular steps and implemented them into a new mechanical algorithm. The
three columns for the table of the method of differences were represented
by clocks that Babbage subsequently implemented as rotating cylinders. In
the first working prototype of the Difference Engine (ca. 1833), the step-by-
step rotation of cylindrical ‘clocks’ replaced the movements of a hand,
adding digits on a piece of paper. The artefact of the clock had here the
exemplary role of heuristic mediator between the system of numeration and
the algorithm of calculation. If automation is pursued out of the need to
save time, its implementation under the clock form itself is emblematic. It is
also revealing that, after being used to measure manual labour productivity
in the factory, the clock hand comes to automate hand calculation itself.

These cylindrical clocks were designed to receive a number as an
incremental rotation, to add it to a previous number of increments, and to
perform a total output under the form of a further incremental rotation. This
movement was, however, imprisoned within a mechanism that could
perform, irreversibly, only one large, continuous operation. Just as it did not
distinguish hardware from software, Babbage’s clock-cylinders also did not
really distinguish numbers from processes, or memory from operations.
These two functions were to be separated in the design of the Analytical
Engine (and later in modern computers as the division between memory and
the Central Processing Unit). Another limitation that Babbage’s mechanical
algorithm confronted was the decimal system itself and the problem of
automating the carryover of the tens place, which afflicted mechanical
calculation since the time of Pascal.14 It must be remembered that the
binary system was implemented (thanks to Leibniz, Boole, Turing,
Shannon, and von Neumann, among others) because it technically
simplifies addition and subtraction. An electric switch can turn on and off,
with these two states representing all the necessary units of numeration (see
chapter 6). The Difference Engine’s wheels, on the other hand, struggled to
contain ten numerals, and Babbage tried to resolve the problem of the
remainder by a sophisticated yet clumsy carriage return.

As Matthew Jones has illustrated, for Babbage as for many philosopher-
inventors of the modern age, the enterprise of mechanical calculation was
not to be distinguished from that of natural philosophy, which aimed at
‘reckoning with matter’, for the precise reason that reckoning was



considered a lower mental activity, something that the ‘mechanical’ classes
(or their machine equivalent) had to perform for the upper classes. Indeed,
most modern natural philosophers (Hobbes aside) maintained that the mind
could not be reduced to mechanism.15 In this political climate, mental
labour could therefore be automated because it was a task of the working
class, and not one to be regarded as ‘thinking’ proper.

Principles of labour analysis

Although the Difference Engine easily evokes fascination for historians of
Victorian science and technology, Babbage should be remembered less for
the machine itself than for the principles of the division of labour that
inspired its design. Historians of science such as Daston and Schaffer have
contributed to questioning the Difference Engine’s status as the solo violin
of early automated computation and instead made visible, on the stage of
the industrial age, a less seductive yet more logical protagonist: the division
of labour and its social hierarchy. Schaffer has highlighted that Babbage’s
‘machine intelligence’ proceeded from the ‘mindful hands’ of workers,
craftsmen, and machinists who were building experimental contrivances, as
seen above, in ‘places of intelligence’ such as workshops and factories
rather than royal academies. As Jones details, Babbage publicly pursued
Francis Bacon’s ‘hope for the discovery of a philosophical theory of
invention’.16 Yet the secret of his calculating engine was not the imitation
of God’s foresight (as Babbage argued)17 so much as the everyday business
of these workshops and factories, made of continuous failures and conflicts
with workers, including the insubordination of Babbage’s own team. In
order to better understand the design of Babbage’s machines and their
quality of ‘machine intelligence’, it is therefore necessary to explicate his
two principles of labour analysis: (1) the labour theory of the machine,
which states that a new machine comes to imitate and replace a previous



Figure 2.3. Babbage’s Difference Engine. Charles Babbage, Passages from the Life of a Philosopher,
London: Longman, Roberts & Green, 1864, front cover.



As the founder of modern economics, Adam Smith was the first to have
sketched a labour theory of the machine in The Wealth of Nations (1776) by
recognising that new machines are ‘invented’ by imitating the organisation
of tasks in the workplace: ‘The invention of all those machines by which
labour is so much facilitated and abridged seems to have been originally
owing to the division of labour.’18 Whereas the independent tool emerges
out of the repetition of a simple manual activity, the machine emerges out of
assemblages of these tools. Given his greater technical experience, Babbage
formulated this idea better in his On the Economy of Machinery and
Manufactures:

Perhaps the most important principle on which the economy of a manufacturer depends, is
the division of labour amongst the persons who perform the work … The division of labour
suggests the contrivance of tools and machinery to execute its processes … When each
process has been reduced to the use of some simple tool, the union of all these tools, actuated
by one moving power, constitutes a machine.19

The labour theory of the machine is based on a postulate at once
technical and economic, according to which a machine emerges only after a
coordination of tools has been tested and proved to be successful for
production and cost reduction. If Smith and Babbage are right, and a
machine emerges as the experimentation and implementation of a collective
division of labour, a political issue comes straightaway to the fore: Who is
actually the inventor of the machine? Who can claim credit for its
invention? Workers, factory masters, engineers, or the orchestration of all
these actors? Who owns the right over such a collective division of labour?
These were actual and highly debated issues in the so-called ‘Machinery
Question’ of the nineteenth century (see chapter 3).

Babbage’s further contribution was to frame the labour theory of the
machine – namely, that a machine imitates and replaces a previous division
of labour – in terms of economic planning. In fact, the division of labour
itself emerged not just to better organise labour in modular tasks but to
precisely measure (to compute, one is tempted to say) the cost of each task.
The so-called Babbage principle is canonically formulated in this passage:

The master manufacturer, by dividing the work to be executed into different processes, each
requiring different degrees of skill and force, can purchase exactly that precise quantity of
both which is necessary for each process; whereas, if the whole work were executed by one
workman, that person must possess sufficient skill to perform the most difficult, and
sufficient strength to execute the most laborious, of the operations into which the art is
divided.20



The Babbage principle states that the organisation of a production
process into small tasks (the division of labour) allows for the calculation
and precise purchase of the quantity of labour that is necessary for each task
(the division of value). The division of labour establishes a privileged
perspective for the surveillance of labour, but also helps to modulate the
extraction of surplus labour from each worker according to need. In more
analytical terms, the Babbage principle posits that the abstract diagram of
the division of labour helps to organise production while at the same time
offering an instrument for measuring the value of labour. In this respect, the
division of labour provides not only the design of machinery but also of the
business plan.

A fundamental theory of automated computation came from Babbage’s
application of his principles of labour calculation to the division of mental
labour. Notably, he already saw the factory as a sort of knowledge economy
from which to extract exact ‘quantity of skill and knowledge which is
required’ from each worker:

The effect of the division of labour, both in mechanical and in mental processes, is, that it
enables us to purchase and apply to each process precisely that quantity of skill and
knowledge which is required for it: we avoid employing any part of the time of a man who
can get eight or ten shillings a day by his skill in tempering needles, in turning a wheel,
which can be done for sixpence a day; and we equally avoid the loss arising from the
employment of an accomplished mathematician in performing the lowest processes of
arithmetic.21

Combining both Babbage’s principles, one could say that computation
emerged as both the automation of the division of mental labour and the
calculus of the costs of such labour. One could postulate that, under the
logic of computation, the automation of labour and the calculus of the cost
of labour even become the same thing. After all, to compute means to
measure the costs of labour in terms of time, space, energy, resources, and
capital. This often neglects, from capital’s perspective, the ‘human cost’ of
such labour. As the historian of science Norton Wise has remarked, the
division of labour

is actually one of the hierarchy of labour, rather than merely division … It separates skill
from brute force in order that the manufacturer does not have to pay for them simultaneously
… But the single principle applies to the entire hierarchy, to machines as to human labourers
and to mental as to physical labour, requiring that the numbers and kinds of all sources be
allocated so as to minimize cost of production. It is a principle of the interior organization of
a factory … which Babbage sought to generalize to the entire political economy.22



What Babbage’s principles of labour analysis implied was the further
discrimination between skilled and unskilled workers and the ‘automation’,
ultimately, of social hierarchies of knowledge. In conclusion, Babbage’s
labour theory of the machine is of extraordinary importance when it is
combined with his principle of labour calculation: together, they seem to
define the industrial machine not just as a productive apparatus but also as
an instrument of measurement of labour. Ultimately, the Babbage principle
represents a machine theory of value – that is, a model to mechanically
represent and compute labour costs and capital investments. In a highly
formalised way, it can be said that the labour theory of the machine and the
machine theory of value together form a technoeconomic principle
according to which the machine is built by the division of labour in order to
achieve a more accurate calculation and extraction of surplus value.

Analytical intelligence and machine semiotics

Mulling over broken tools, uneven cogs, and unfinished machines, Babbage
found himself in a situation not uncommon to many other inventors: he
needed to codify an artificial language in order to improve and accelerate
design. In On the Economy of Machinery, he writes:

It is possible to construct the whole machine upon paper, and to judge of the proper strength
to be given to each part as well as to the framework which supports it, and also of its
ultimate effect, long before a single part of it has been executed. In fact, all the contrivance,
and all the improvements, ought first to be represented in the drawings.23

As Jones has noted, Babbage’s analytical hopes soon clashed with the
contingencies of implementation and the necessity of human cooperation.
In his autobiography, Babbage himself admitted that ‘draftsmen of the
highest order were necessary to economize the labour of my own head;
whilst skilled workmen were required to execute the experimental
machinery to which I was obliged constantly to have recourse’.24 Babbage’s
project of a ‘machine semiotics’ (as Schaffer has called it) extended his
principles of labour analysis and expressed an intuition similar to what
more recent authors have alternatively defined as ‘mechanical thinking’,
‘computational thinking’, or ‘algorithmic thinking’.25

After basing the calculating engines on the analysis of the division of
mental labour, Babbage tried to establish a notational system for machine



design on similar principles. In order to better articulate their logical form,
the design of the calculating engines called for a symbolic metalanguage (a
second-order representation), which Babbage termed ‘mechanical notation’.
Babbage expressed this project in two texts: ‘On a Method of Expressing by
Signs the Action of Machinery’ (1826) and ‘Laws of Mechanical Notation’
(1851).26 The epistemic dimension of machine making was already clear to
Babbage in another note from 1851:

It is not a bad definition of man to describe him as a tool-making animal. His earliest
contrivances to support uncivilized life were tools of the simplest and rudest construction.
His latest achievements in the substitution of machinery, not merely for the skill of the
human hand, but for the relief of the human intellect, are founded on the use of tools of a still
higher order.27

The purpose of mechanical notation was to represent dynamic diagrams
of machine states, over and beyond the traditional static drawings.
Considering the nature of these calculating machines, Babbage’s
mechanical notation can be considered the embryonic stage of what would
later become the flow charts and programming languages of twentieth-
century digital computers. The logical equivalence between Babbage’s
mechanical notation and digital computer language is no coincidence: in
fact, it is possible for the latter to emulate the former.28

The idea of mechanical notation must also be contextualised as part of
the intellectual milieu of Babbage’s time – and in particular, the controversy
about the rise of mathematical analysis in British universities against the
traditional curricula of geometry. In the early nineteenth century, a dispute
broke out at Cambridge University between geometry scholars proud of
their practical insights and the new algebraists. The latter were accused of
merely adopting a fashionable pose from France – called ‘Analysis’ –
which mired them in abstractions lacking any practical use. With industrial
capitalism storming through the United Kingdom, however, the arrival of
‘analytical’ thinking in academia can be considered as echoing another
equally urgent form of ‘analysis’ for the time: the analysis of labour.
Indeed, mathematical analysis appeared to be encouraged by the economic
demand for more analytical intelligence on labour and machines. As will be
shown in chapter 4, even Marx adopted Babbage’s terminology, writing in
the Grundrisse that the best method for designing machines is not the



application of science (the ‘analysis of nature’) to industry but the ‘analysis
through the division of labour’.29

Regarding the process of invention, Babbage suggested a threefold
design: (1) the analysis of the machine’s design through its components; (2)
the simplification of the machine’s design; and (3) the implementation of
the simplified design, which usually brings further adjustments.30 The
algorithmic nature of this method is manifest in the centrality given to the
simplification process, which makes it equivalent to a method of
optimisation and economisation of resources. In his late autobiography,
Passages from the Life of a Philosopher, Babbage remarked, unsurprisingly,
that the economy of time – which is key to the division of labour and the
design of machines – is also key to the calculation programs to be run on
the Analytical Engine (a principle known today as algorithmic efficiency):
‘As soon as an Analytical Engine exists, it will necessarily guide the future
course of the science. Whenever any result is sought by its aid, the question
will then arise – By what course of calculation can these results be arrived
at by the machine in the shortest time?’31 Babbage was therefore not just
the mathematician that most of his biographers portray, but already an
‘algorithmic thinker’, as the principle of design optimisation and resource
economisation was key to his (uncompleted) machines as much as it was to
his (speculative) algorithms.32

Babbage’s mechanical notation grew, essentially, out of the analysis of
labour. If the design of the labour process forges the machine’s design, then,
in a similar way, the machine’s design itself inspires the machine language
as a second-order representation. As elucidated in chapter 1, the scaffolding
of further levels of abstraction in industrial machine design is typical of the
development of cultural techniques. Babbage’s principles are specifically
principles of the ‘analytical intelligence’ of labour that can also be useful
for illuminating the history of AI in the following century, as a continuous
implementation and automation of labour tasks.33 In short: the analytical
intelligence of labour is what grounds the analytical intelligence of the
machine.

Ada Lovelace: When computers were women



Babbage was no solitary genius. Since the publication of Bertram Bowden’s
anthology Faster than Thought (1953), the figure of Ada Lovelace and her
contribution to Babbage’s projects have progressively been
acknowledged.34 Indeed, a growing literature today, while overlooking the
role of other ‘anonymised’ women in the business of calculation of the
time, celebrates her as the ‘first woman programmer of history’.35

Lovelace, the daughter of the poet Lord Byron and the often forgotten
mathematician Anne Isabella Milbanke, was passionate about the algebraic
notation known at the time as ‘Analysis’ – so much so that she even gave
herself the futuristic title of ‘Analyst’.36 This passion for mathematics and
abstract notation brought her to become an acquaintance of Babbage.

Lovelace assisted Babbage in designing the Analytical Engine and
wrote the first-ever documented machine program. Even though the
Analytical Engine was never realised, Lovelace’s virtual program,
understood as a set of instructions to be executed by a machine, is
considered the first example of present-day algorithms – though she never
used the term ‘algorithm’ herself but rather called the program a ‘diagram’.
Her ‘Diagram for the computation of Bernoulli numbers’ is found in the
‘Notes’ to Luigi Menabrea’s ‘Sketch of the Analytical Engine Invented by
Charles Babbage’.37 Menabrea (who would become Italian prime minister
in 1867) met Babbage in Turin as a young mathematician and wrote an
account of the Analytical Engine. Babbage subsequently asked Lovelace to
translate Menabrea’s text from French, and she expanded it with an
appendix that turned out to be longer than the main text.

These ‘Notes’ are a milestone in the history of computation, as they
sketch embryonic postulates of what in the twentieth century would become
known as ‘computer science’ and what in her time Lovelace defined as the
‘science of operations’.38 Her intention was to distinguish between the
logical and mechanical structure of the Engine – or between software and
hardware, as one would say today. Taking the mechanical contrivances that
made such logical powers possible as a substrate, she detailed the
improvements upon its predecessor, the Difference Engine (which, as
mentioned above, implemented just a single algorithm). It can therefore be
said that Lovelace dedicated herself to the ambitious and complex task of
describing the Analytical Engine as the first general purpose computer, as it
would be termed today.



By envisioning a logical machine that could express all possible
equations and their evaluation, Lovelace advanced a definition of
‘operation’ which was more general and universal than the operation upon
numbers as it is understood by traditional mathematics. Her science of
operations included the abstract manipulation of any entity, not just
numbers, suggesting in this way a broader meaning also for the definition of
automation. She wrote:

It may be desirable to explain, that by the word operation, we mean any process which alters
the mutual relation of two or more things, be this relation of what kind it may. This is the
most general definition, and would include all subjects in the universe. In abstract
mathematics, of course operations alter those particular relations which are involved in the
considerations of number and space, and the results of operations are those peculiar results
which correspond to the nature of the subjects of operation. But the science of operations, as
derived from mathematics more especially, is a science of itself, and has its own abstract
truth and value.39

In other words, Lovelace defined as an ‘operation’ the control of
material and symbolic entities beyond the second-order language of
mathematics (like the idea, discussed in chapter 1, of an algorithmic
thinking beyond the boundary of computer science). In a visionary way,
Lovelace seemed to suggest that mathematics is not the universal theory par
excellence but a particular case of the science of operations. Following this
insight, she envisioned the capacity of numerical computers qua universal
machines to represent and manipulate numerical relations in the most
diverse disciplines and generate, among other things, complex musical
artefacts:

[The Analytical Engine] might act upon other things besides number, were objects found
whose mutual fundamental relations could be expressed by those of the abstract science of
operations, and which should be also susceptible of adaptations to the action of the operating
notation and mechanism of the engine … Supposing, for instance, that the fundamental
relations of pitched sounds in the science of harmony and of musical composition were
susceptible of such expression and adaptations, the engine might compose elaborate and
scientific pieces of music of any degree of complexity or extent.40

Doron Swade, a historian of computing, has given the following
compelling portrait of Lovelace, who, as a pioneer of ‘general purpose
computation’, was discovering the potentiality of symbolic manipulation
beyond the field of mathematics:

Ada saw something that Babbage in some sense failed to see. In Babbage’s world his
engines were bound by number … What Lovelace saw … was that number could represent



entities other than quantity. So once you had a machine for manipulating numbers, if those
numbers represented other things, letters, musical notes, then the machine could manipulate
symbols of which number was one instance, according to rules. It is this fundamental
transition from a machine which is a number cruncher to a machine for manipulating
symbols according to rules that is the fundamental transition from calculation to computation
– to general-purpose computation.41

Lovelace sensed the speculative horizons upon which the Analytical
Engine, with its unbound powers of computation, would open:

The Analytical Engine does not occupy common ground with mere ‘calculating machines’.
It holds a position wholly its own; and the considerations it suggests are most interesting in
their nature. In enabling mechanism to combine together general symbols in successions of
unlimited variety and extent, a uniting link is established between the operations of matter
and the abstract mental processes of the most abstract branch of mathematical science. A
new, a vast, and a powerful language is developed for the future use of analysis, in which to
wield its truths so that these may become of more speedy and accurate practical application
for the purposes of mankind than the means hitherto in our possession have rendered
possible. Thus not only the mental and the material, but the theoretical and the practical in
the mathematical world, are brought into more intimate and effective connexion with each
other. We are not aware of its being on record that anything partaking in the nature of what is
so well designated the Analytical Engine has been hitherto proposed, or even thought of, as a
practical possibility, any more than the idea of a thinking or of a reasoning machine.42

Lovelace’s ‘Notes’ contain, however, the first dismissal of AI in a world
that was already cultivating the anthropomorphic projection of a machine
that could ‘think’ like a human. In the famous note ‘G’, she wrote:

The Analytical Engine has no pretensions whatever to originate anything. It can do whatever
we know how to order it to perform. It can follow analysis; but it has no power of
anticipating any analytical relations or truths. Its province is to assist us in making available
what we are already acquainted with. This it is calculated to effect primarily and chiefly, of
course, through its executive faculties; but it is likely to exert an indirect and reciprocal
influence on science itself in another manner. For, in so distributing and combining the truths
and the formulae of analysis, that they may become most easily and rapidly amenable to the
mechanical combinations of the engine, the relations and the nature of many subjects in that
science are necessarily thrown into new lights, and more profoundly investigated. This is a
decidedly indirect, and a somewhat speculative, consequence of such an invention. It is
however pretty evident, on general principles, that in devising for mathematical truths a new
form in which to record and throw themselves out for actual use, views are likely to be
induced, which should again react on the more theoretical phase of the subject. There are in
all extensions of human power, or additions to human knowledge, various collateral
influences, besides the main and primary object attained.43

That the Analytical Engine could follow analysis means that it could
represent and embody the analytical construction of a problem as an
algebraist could do. Moreover, that the Analytical Engine had ‘no power of



anticipating any analytical relations or truths’ means that it could not
exceed or break the chain of reasoning that it was representing and
materially embodying – just as today’s algorithms for data analytics that are
rebranded as ‘machine learning’ and ‘artificial intelligence’ cannot
creatively break the rules on which they are based and, more importantly,
cannot consistently invent new ones.

Babbage reluctantly recognised Lovelace’s contribution, asking to
publish her notes on the Analytical Engine anonymously. For her resistance
against Babbage’s chauvinism, Lovelace is, without a doubt, an exemplary
figure of technical curiosity and emancipation in an academic and scientific
world dominated by men.44 Yet her hagiographic portrait has also to be
placed into its context. Both Babbage and Lovelace’s stories belong to a
narrative of the industrial era in which social hierarchies and intellectual
debts are mystified by a predictable bourgeois personality cult. One
example is a quote from Lovelace that has become a routine slogan for the
digirati: ‘We may say most aptly that the Analytical Engine weaves
algebraic patterns just as the Jacquard loom weaves flowers and leaves.’ To
the romanticism of this quote, Schaffer contrasted a harsh observation:
‘Lovelace never raised the problem of the substitution of weavers’
intelligence by a series of automatic program cards nor the consequent
sufferings of London’s skilled unemployed.’45

The march of the material intellect

According to Babbage’s vision, the calculating engines were also tools for
the measurement, disciplining, and surveillance of labour – that is, for the
‘intelligence’ of labour, at least in the sense the word still carried at the
time. According to Schaffer, in fact, ‘in early nineteenth-century Britain the
word intelligence simultaneously embodied the growing system of social
surveillance and the emerging mechanisation of natural philosophies of
mind.’46 Well before the technocratic ambitions of cybernetics in the
twentieth century, Babbage had cultivated a larger technocratic vision of
society through his calculating machines. The hyperbolic publicist
Dionysius Lardner professed that Babbage’s new system of mechanical
notation could be useful for describing and operating ‘an extensive factory,



or any great public institution, in which a vast number of individuals are
employed, and their duties regulated’.47

In a similar vein of industrialist propaganda, Babbage’s book on
machinery and manufactures concluded with a chapter on the grandiose
progress of British capitalism under the banner of ‘abstract Science.’48

There, Babbage specifically asserted that the accumulation of science does
not follow the laws of scarcity of physical forces and material production
but is virtuously amplified over time:

Science and knowledge are subject, in their extension and increase, to laws quite opposite to
those which regulate the material world. Unlike the forces of molecular attraction, which
cease at sensible distances; or that of gravity, which decreases rapidly with the increasing
distance from the point of its origin; the further we advance from the origin of our
knowledge, the larger it becomes, and the greater power it bestows upon its cultivators, to
add new fields to its dominions.49

Commenting on Babbage’s ideology, and its striking resemblance to
twentieth-century proclamations about the knowledge society, Norton Wise
writes:

The engine metaphor now extends from the literal steam engine setting machinery in motion,
to capital as the engine of labour, to the machine economy as a social engine, to scientific
knowledge as an engine of practical action. Inevitably, scientific knowledge represented
capital in the economy of knowledge, a reservoir of moving force which continued to
accumulate at compound interest.50

These optimistic views about knowledge development were not
uncommon at the time: as shown in the following chapter, Ricardian
socialists such as William Thompson and Thomas Hodgskin had similar
utopian theories about the accumulation of knowledge labour from the
perspective of the workers’ movement. According to Babbage, the ratio of
the ‘continually increasing field of human knowledge’ is exponential, and
one wonders (as did the Ricardian socialists and Marx) what the effect
would be of such an overproduction of knowledge and science on the
economy and on capital accumulation. It is at this climax of accumulation
of knowledge and science that Babbage prophetically announced the
hegemonic rise of a new science – the science of calculation:

We must remember that another and a higher science, itself still more boundless, is also
advancing with a giant’s stride, and having grasped the mightier masses of the universe, and
reduced their wanderings to laws, has given to us in its own condensed language,
expressions, which are to the past as history, to the future as prophecy. It is the same science



which is now preparing its fetters for the minutest atoms that nature has created: already it
has nearly chained the ethereal fluid, and bound in one harmonious system all the intricate
and splendid phenomena of light. It is the science of calculation – which becomes
continually more necessary at each step of our progress, and which must ultimately govern
the whole of the applications of science to the arts of life.51

Ideology here wins our over Babbage’s scientific achievements. While
in an earlier chapter of his book, Babbage grounded the science of
calculation on the principles of labour analysis, he ultimately presented it as
the materialisation of science in the abstract.

In a similar way to the contemporary AI discourse, Babbage captured
the collective intelligence of the division of labour and instrumentalised it
to build a technocratic view of society.52 Babbage’s rhetoric never explicitly
acknowledged the Machinery Question – the public debate about workers
who were being replaced by machines. Rather, for him, knowledge of steam
power and the new science of automated calculation were meant to serve
solely as a multiplier of productivity.53 In the words of the historian
William Ashworth: ‘Babbage’s work on his calculating machine was the
march of the material intellect set to the rhythm of the factory.’54
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3
The Machinery Question
 

What is the effect of machinery?
To do that labour which must otherwise be done by hand, and to do it more
perfectly and expeditiously.
To whom then ought the machinery to belong?
To the men whose work it does – the labourers …
Who are the inventors of machinery?
Almost universally the working men.
But why do not the working men use machinery for themselves?

No Answer!!!
The Pioneer, 18331

The history of the English working classes begins in the second half of the eighteenth century
with the invention of the steam engine and of machines for spinning and weaving cotton. It is
well known that these incentives gave the impetus to the genesis of industrial revolution.

Friedrich Engels, The Condition of the Working Class in England,
18452

The science which compels the inanimate limbs of the machinery, by their construction, to
act purposefully, as an automaton, does not exist in the worker’s consciousness, but rather
acts upon him through the machine as an alien power, as the power of the machine itself.

– Karl Marx, Grundrisse, 18583



How to question technology

It is commonly believed that the Industrial Revolution took English society
by storm and transformed an economy of regular agricultural cycles into
one of violent and unstable growth. For a long time, across the political
spectrum, it has been accepted that capitalism began as machine capitalism
and that even the making and destiny of the working class was tied to an
industrial machine.4 Friedrich Engels himself declared this commonplace in
the first line of The Condition of the Working Class in England (1845,
quoted as an epigraph to this chapter). However, his collaboration with Karl
Marx would radically challenge this apparently techno-deterministic view
into one which recognised workers and the division of labour, rather than
technology, as the main drivers of capitalist development.5

During the industrial age, machines came to supplant workers, dividing
them into skilled and unskilled labourers, further separating mental from
manual labour, and imposing new social hierarchies. Workers, however,
resisted such division. They rebelled against machines and confronted their
‘alien power’, they discussed the role of machines, stormed factory floors to
destroy them, and demanded, eventually, public education about them. The
outcome of this outcry was the oftenforgotten ‘Machinery Question’, the
public debate sparked in English society at this time upon the massive
replacement of workers by new technologies.

As a necessary prelude to the study of contemporary AI, this chapter
aims to illuminate not just the social conflicts behind the Machinery
Question but also the extended field of knowledge production around
industrial machines and machine labour. Already during the industrial age,
machines presented a problem of machine intelligence – also nderstood as
lack of collective knowledge about them. Besides its well-celebrated
muscular, energetic, and thermodynamic exploits (documented by Anson
Rabinbach in his book The Human Motor),6 industrial labour also entailed
knowledge about machines, knowledge embodied by machines, and
knowledge produced and projected anew by machines. This epistemic
dimension of the industrial age, different from but related to its energetic
one, is less investigated and appears always secondary in the vast literature
of political economy (including Marxism). It is from this point of view –
which is to say from the perspective of knowledge production, of the



inquiry into the forms of knowledge of the industrial age – that this chapter
hopes to cast a different light on and pay respect to a century of hard labour.

In her influential book The Machinery Question and the Making of
Political Economy, historian Maxine Berg argues that at the time of the
industrial age,

machinery became the most immediate basis for the relationship between capitalist and
worker. It was the machine which defined the organisation of work and which held the
balance of power in the determination of the distribution of returns from labour.7

This is an egregious description of the field of forces, more precisely of
the political battlefield, in which social and economic actors had to confront
each other. Rather than a campaign of the industrialists, it must be
immediately noted that the Machinery Question was first and foremost a
reaction of the working class and an expression of its demand for control
and ownership of technological progress. Berg writes:

Workers criticised the rapid and unplanned introduction of new techniques in situations
where the immediate result would be technological unemployment. But they also went
beyond this to challenge the uses and property relations of technology. They demanded an
equitable distribution of the gains from technical progress. Rather than raising the profits of
the few, the machine, they argued, might lighten the labour and increase the leisure of the
many. They also demanded greater control over the direction of technological change …
Technological progress should also be directed to changing the role of women in society,
dispensing with the heavy manual labour and the household chores which prevented many
women from claiming an equal position with men.8

The Machinery Question was canonically established by David Ricardo
in the chapter ‘On Machinery’ that was added to the 1821 edition of his
Principles of Political Economy. Ricardo’s thesis was the following: while
it was true that new machinery would cheapen commodity prices,
nonetheless the working class would not benefit from this, since wages
would be reduced by the competition among workers which is caused by
technological unemployment. Berg adds that:

The [machinery] question was central to everyday relations between master and workman,
but it was also of major theoretical and ideological interest. The very technology at the basis
of economy and society was a platform of challenge and struggle. The machine was debated
at length in all sectors of society. It provoked the village cleric as much as it did the
cosmopolitan intellectual; it concerned the politician as much as the workman and employer;
the social reformer as much as scientist and inventor. These groups contended over the costs
and benefits of the new technology. They hailed the release it provided from limits to
growth, but disagreed over the impact it would have on wages, employment, and skill. They
speculated on, and then either welcomed or dreaded, the changes the machine would bring to



social relations. The origins and the ownership of machinery even came up for question.
There was excitement and fear at this unknown force which swept relentlessly onward,
casting the old society in its wake.9

The Machinery Question was therefore a complex phenomenon: an
issue of popular culture, political propaganda, scientific contestation, and
social control through education. The machine became the site of an
intellectual struggle and political occupation by radical thinkers, utopian
industrialists, and socialist (and sometimes conservative) militants.10 The
ideological struggle around machinery involved popular literature and
pamphlets, poems and satires, and also the industrialists’ celebration of a
machine cult with dancing automata, ‘mechanical Turks’, and industrial
engines set on display in public squares as tourist attractions. Charles
Babbage was known for exhibiting a feminised dancing automaton in his
salon, ‘in the room next to the unfinished portion of the first Difference
Engine’.11 As Berg has stressed, the rise of political economy as a new
discipline was part of the intellectual struggle to control the Machinery
Question.12

The response to the employment of machines and workers’ subsequent
technological unemployment was also the demand, by both workers and
industrialists, for more knowledge about machines, for more education and
better training, which took the form of the Mechanics’ Institute movement,
among other initiatives. The year 1823 saw the establishment of the London
Mechanics’ Institute, later known as Birkbeck University – which still bears
the Latin motto In nocte consilium (‘Advice comes overnight’), as students
were used (or, more accurately, forced) to attend evening and night courses
after their daily shift at work. In 1826, Henry Brougham, future lord
chancellor, founded the Society for the Diffusion of Useful Knowledge to
help those who had no access to schooling, the same year that the London
University (later University College London) was founded. The Owenite
Hawkes Smith went so far as to forge mechanical metaphors for education:
‘There is an intellectual machinery, a mental steam power at work, and still
rising in its action which renders education proportionately as cheap and as
attainable to the man of small means as his clothing and his domestic
appointments.’13 It has indeed been forgotten how a good part of the British
academic landscape finds its roots in the epistemic acceleration of the
Industrial Revolution.14



Which forms of knowledge were debated under the auspices of the
Machinery Question? Knowledge understood as skill and mechanical
invention, applied rather than abstract science, was the mission of workers,
engineers, educators, and industrialists. The Mechanics’ Institutes were the
incarnation of such a trend, searching, in Berg’s words, for the ‘optimal
combination of science and skill … a higher form of skilled labour, one
freed from the degradation of the division of labour and imbued with
creative and innovative instincts’.15 Everyone maintained that economic
growth was bound to the invention of new machines and considered the
intellect as the machine within the machine; however, the role of the
intellect in this process was not then completely clear (and it is not yet
today).

In this debate, Marx was probably one of the most original and acute
voices. He came to question the technological determinism according to
which the machine would be the prime mover of industrial capitalism.
Reversing the common perception of the relation between technology and
economy, he argued that technological development (the means of
production) is triggered by the division of labour (the relations of
production) and not the other way around.16 According to Marx, capitalist
accumulation is pushed by the exploitation of surplus value, by an ever-
growing division of labour, rather than by technological acceleration. In his
view, it was the emerging intelligence of the division of labour, the
spontaneous and distributed cognition of masters and workers, which
invents machines, not science per se. Science came into play only
afterwards, to improve machines that emerged from a social configuration.
For Marx, to be precise, the actual alien power that moves capitalism is not
machinery but living labour.

These sketches of the Machinery Question aim to reveal the full
spectrum of social forces which lay behind the intellectual universe of the
industrial age, rather than accept technological determinism as its main
theory. Indeed, during that age a complex dialectics between social,
technical, scientific, and cultural forms took place which cannot be reduced
to any of them. The extended list of knowledge models and modalities of
knowledge production that crossed the industrial age should at least include:
the type of knowledge that is represented by the act of invention of a
machine; the division of labour that inspires its design; the know-how of
engineering and the symbolic language that is necessary to describe



mechanism; hard sciences such as mechanics and thermodynamics; non-
technical disciplines such as political economy; the metrology of manual
and mental labour and the instruments to measure them; collective
knowledge as embodied in both machinery and social relations (the so-
called ‘general intellect’); educational movements such as the Mechanics’
Institutes; political campaigns such as the March of Intellect; and, finally,
popular mythologies around automata such as the Mechanical Turk. The
Machinery Question contained all these contested forms of knowledge. This
was not entirely a public history – one of visible movements and effects –
but more often an anonymous history: one of invisibilisation (of women’s
labour, especially) and of political amnesia surrounding early notions of
political economy such as mental labour.

Against the spell of invisibilisation of the workforce, especially to better
understand the demonisation of mental labour in the following century and
the reason why mental labour disappeared from the debates on technology,
this chapter expands, from opposite angles, upon the previous chapter’s
reflection on Babbage’s labour theory of the machine. On the one hand, it
illustrates the influence of knowledge in the definition of labour, framing a
knowledge theory of labour (dear in the same way to nineteenth-century
Ricardian socialists and twentieth-century knowledge economists). On the
other hand, it illustrates the key influence of new machines and instruments
on the development of new knowledge, expanding upon a machine theory
of science that is key to the materialist epistemology of this book.

The knowledge theory of labour

The study of the relation between knowledge and labour has been
complicated by the hegemony that science has maintained, in the modern
era, in defining and enforcing social hierarchies. The epistemic imperialism
of science institutions has obfuscated the role that labour, craftsmanship,
experiments, and spontaneous forms of knowledge have played in
technological change: it is still largely believed that only the application of
science to industry can invent new technologies and prompt economic
growth, while this is in fact rarely the case. Indeed, early nineteenth-century
political economy already recognised the productive role of mental labour
and the knowledge component of any form of manual labour in



technological invention. Ricardian socialists such as William Thompson
and Thomas Hodgskin, for instance, provided an analysis of mental labour
that largely predates the theorists of the knowledge society of the twentieth
century. Their position is illustrated, in this book, as a knowledge theory of
labour, according to which the main component of labour is not muscular,
physical, and energetic, but primarily psychological, intellectual, and
informational.

William Thompson was ‘an Irish landowner who embraced Owenism,
and criticised political economy from a utopian socialist position, but on the
basis of Ricardo’s doctrines’.17 In 1824, Thompson published a since-
forgotten book with the optimistic title An Inquiry into the Principles of the
Distribution of Wealth Most Conducive to Human Happiness Applied to the
Newly Proposed System of Voluntary Equality of Wealth. There Thompson
provided one of the first systematic definitions of knowledge labour of the
modern age:

In speaking of labour, we have always included in that term the quantity of knowledge
requisite for its direction. Without this knowledge, it would be no more than brute force
directed to no useful purpose. In whatever proportion knowledge is possessed, whether in
whole or in part, by the productive labourer, or by him who directs his labour, it is necessary
in order to make his labour productive that some person should possess it.18

Presciently, Thompson argued that the economy of knowledge follows
rules of diffusion that are different than the economy of scarcity of material
goods and instead are driven by continuous expansion and free
multiplication:

Wealth, the produce of labor, is necessarily limited in its supply … Not so with the pleasure
derived from the acquisition, the possession, and diffusion of knowledge. The supply of
knowledge is unlimited … The more it is diffused, the more it multiplies itself.

Thompson, however, perceived the ambivalence of instrumental
knowledge, in a sort of ‘dialectics of enlightenment’ ante litteram. In a
typical polemic of Owenism, Thompson described machinery as
humiliating the ‘general intellectual powers’ of the workers that were
reduced, in this way, to ‘drilled automata’. The factory was an apparatus to
keep the workers ‘ignorant of the secret springs which regulated the
machine and to repress the general powers of their minds’ so ‘that the fruits
of their own labors were by a hundred contrivances taken away from



them’.19 Marx’s quote from Thompson in Capital is a perfect distillation of
this thought:

The man of knowledge and the productive labourer comes to be widely divided from each
other, and knowledge, instead of remaining the handmaid of labour in the hand of the
labourer to increase his productive powers … has almost everywhere arrayed itself against
labour. ‘Knowledge’ becomes ‘an instrument, capable of being detached from labour and
opposed to it’.20

Thompson’s was not only the first modern account of knowledge labour
and of the cognitive component of all labour, but also one that recognised
the alienation of knowledge from workers and its transformation into a
repressive power inimical to the workers themselves.

Similar positions were advanced also by Thomas Hodgskin, a Ricardian
socialist of libertarian tendency who believed in the progress of collective
knowledge and the autonomy of society from both capital and state
intervention. Hodgskin was one of the founders of the London Mechanics’
Institute, where in 1826 he presented the lecture ‘On the Influence of
Knowledge’, later published as part of his book Popular Political Economy
(1827). Socialists such as Thompson and Hodgskin argued that knowledge
is key to economic prosperity. Hodgskin complained that Adam Smith, the
father of political economy, did not give a proper treatment to the subject,
commenting:

Those books, therefore, called Elements, Principles, or Systems of Political Economy, which
do not embrace and fully develop … the whole influence of knowledge on productive power,
and do not explain the natural laws which regulate the progress of society in knowledge, are
and must, as treatises on Political Economy, be essentially incomplete.21

In a clear anti-Malthusian argument, Hodgskin anchored the virtuous
growth of knowledge to the needs of a growing population, in this way also
reclaiming the territory of knowledge production from the monopoly of
state academies and science institutions. He positively declared: ‘Necessity
is the mother of invention; and the continual existence of necessity can only
be explained by the continual increase of people.’22 According to Hodgskin,
it is the growth of population that demands better skill in producing and
distributing wealth, thereby generating advanced knowledge: ‘As the world
grows older, and as men increase and multiply, there is a constant, natural,
and necessary tendency to an increase in their knowledge, and consequently
in their productive power.’ Like Thompson, Hodgskin maintained that the



rules of the knowledge economy are not those of capitalism: ‘The laws
which regulate the accumulation and employment of capital are quite
dissimilar to and unconnected with the laws regulating the progress of
knowledge.’ In Hodgskin’s view of society, there should be no intellectual
hierarchies, no division of head and hand, no labour aristocracy to promote,
because ‘both mental and bodily labour are practised by almost every
individual.’23

The demonisation of mental labour

As Berg noted, for participants in the Machinery Question and those within
the Mechanics’ Institute movement, the apparently benevolent celebration
of craftsmanship was actually instrumental to dividing the working class
and inciting a fabricated ‘labour aristocracy’ to mimic bourgeois customs:

The rhetoric on the connection between technological progress and economic improvement
in the Mechanics Institute Movement … meant to contribute to the formalisation of
hierarchies in the labour movement. The skilled artisan was to be separated from unskilled
common labour, and both were to be detached from the middle class. This design for
creating a ‘labour aristocracy’ was complemented by efforts to contribute to the discipline of
the labour force.24

Cultivating the figure of the ingenious artisan among other gifted
personalities (such as scientists and philosophers), the industrialist class
aimed to divide the proletariat according to a hierarchy of deskilled and
skilled workers, and to impose a gradual disciplining of labour. The
workers’ movement, on the other hand, fought to maintain a united front in
which both unskilled workers and skilled artisans could perceive each other
on the same side of the political confrontation. But in order to maintain
such a position, for tactical reasons, it had to both conceal and absorb the
difference of mental labour within the manual, and of individual labour
within the collective. In terms of political strategy, in order to unify a
divided front, it was therefore necessary to declare that all labour is manual
(without implying that all labour is also mental). All collective knowledge,
including skill, know-how, and even science, thus had to become an
expression of labour in common.

Ultimately, this reaction against the social hierarchies of knowledge in
the workers’ movement led to the refusal of status for mental labour among



its ranks and, in this way, the unconscious adoption of a bourgeois social
segmentation. As such, it was in order to maintain the political unity of
workers that mental labour was ostracised from the Machinery Question.
The focus on manual labour has since then imposed an interpretation of
labour as energetic performance only (as Rabinbach has noted, even Marx’s
Arbeitskraft was originally a notion from thermodynamics).25 Both the
middle class’s discrimination of mental and manual labour and the working
class’s neutralisation of mental labour within manual labour were dictated
by reasons of political tactics within the field of social forces of the
industrial age. What is remarkable is that the twentieth-century amnesia
surrounding the nineteenth-century theory of mental labour finds its
explanation in the strength of the workers’ movement in its confrontation
with the capitalist class.

Marx had a specific role in organising the political amnesia of mental
labour (see chapter 4). Although familiar with Thompson and Hodgskin,
both of whom he quoted, in Capital Marx removed all references to mental
labour, knowledge labour, and the ‘general intellect’ to replace them with
the inventive capacity of the division of labour and the new figure of the
collective worker, or Gesamtarbeiter. Following Babbage, Marx adopted
the idea that the extended division of labour, rather than science, was the
inventor of the machine. In this way, Marx reversed Thompson and
Hodgskin’s knowledge theory of labour into the more materialistic labour
theory of knowledge, in which forms of labour that are spontaneous,
unconscious, tacit, and collective are also eventually recognised as
producing knowledge. Industrial machinery, nonetheless, ended up
polarising the distance between skilled and deskilled labour. As Marx
sharply summarised: ‘By the introduction of machinery the division of
labour inside society has grown up, the task of the worker inside the
workshop has been simplified, capital has been concentrated, human beings
have been further dismembered.’26 It is on this basis which Berg concludes
that ‘machinery did not displace labour. Rather, it differentiated this labour
by dismembering the old craft.’27

The distinction of head and hand, of mental and manual labour, is not
only typical of modern industrial societies; it has been part of Western
culture at least since the Aristotelian opposition of episteme (‘knowledge’)
and techne (‘art’ or ‘craft’) in ancient Greece, which later became
functional for defining social hierarchies across the West. Historians of



mathematics such as Peter Damerow actually predate the social separation
of mental and manual labour to the dawn of civilisations due to the need to
count populations, plan agriculture, and administer resources. The control
of abstract symbols would later develop into the domain of letters and spirit
and a long-lasting class segmentation of society, as historians of science
Lissa Roberts and Simon Schaffer record:

Self-appointed mental workers, such as philosophers, scientists, policy-makers and
bureaucrats, then as now, claimed and constructed the dominion of their ‘understanding’
over hand-workers and their crafts. They relied on the mutual reinforcement of coercive
rhetoric and brutal deed. The easy acceptance of their categories has left us with a historical
map shaped by oppositional and hierarchically ordered pairs: scholar / artisan, science /
technology, pure / applied and theory / practice.28

It could therefore be argued that the first division of labour in the
modern sense is the separation of head from hand that gradually emerged
out of the workshops of the Renaissance to be fully severed precisely in the
industrial factories as the division of mental and manual labour. For
instance, Edgar Zilsel, a historian of science, documented how even the
‘heroes’ of the so-called Scientific Revolution, such as Galileo Galilei,
learned more in clandestine workshops, hidden libraries, and nomadic
classrooms than at universities.29 Roberts and Schaffer, for their part, have
proposed the elegant image of the ‘mindful hand’ as a way to recognize and
recompose the ingenuity of manual labour, mechanical experiments, and
scientific workshops throughout modernity, without romanticising
craftsmanship as conservative discourse so often does.30 Rather than
cultivating the provincial ‘heroism’ of craftsmen in a reactionary way, the
image of the ‘mindful hand’ stresses the convivial dimension of
experimental life and its inventions.

Industrial modernity has established itself on the capture of this
collective knowledge by state and economic apparatuses, by institutions of
knowledge and technologies of knowledge, which eventually turned mental
labour into a Geist, to use the ambivalent German term – a ghost, more than
an intellectual spirit, that political theory still struggles to grasp. Extorted
from workers and social cooperation, mental labour assumed the nature of a
half-visible demon: a political issue to be exorcised, for opposite reasons,
by the workers’ movement as much as by corporate interests.31



The machine theory of science

Tool-makers and machine operators knew that they were contributing to the
invention of new technologies. What they were rarely aware of is that they
were also contributing to new scientific discoveries. New machines prompt
scientific notions and paradigm shifts more often than science happens to
invent new technologies from above. As in an example mentioned earlier, it
was the steam engine which gave birth to thermodynamics, rather than the
other way around. The science of heat and energy transformation developed
to ameliorate the steam engine: it was a projection of the lucrative
ambitions of autonomous motion, not just the child of curiosity towards the
universe. In the study of the forms of knowledge that undergo
mechanisation, it is important to also highlight the knowledge of the world
that is expressed anew by machines. The idea that tools, instruments, and
machines project and constitute the ontology of scientific theories about the
world can be defined as a machine theory of science. As Peter Damerow
and Wolfgang Lefèvre have stressed, among others, the tools of work are
also tools for exploring the world and speculating upon it: ‘The
development of science depends on the development of its material tools …
When using a material tool, more can always be learned than the knowledge
invested in its invention.’32 Yet Damerow and Lefèvre also stress that
science is never fully independent from the materiality of its instruments:

Science is not free in forming its abstractions; in this activity it is restricted by material
preconditions, more precisely, by the specific tools at its disposal that provide cognition with
abstractions which are capable of realization … The material tools of scientific labor define
a scope of objective possibilities that represent the framework for developing scientific
abstractions.33

Tools and machines, however, are never fully transparent in their
implications. Machines are born as experiments, and they are often operated
without full knowledge of their workings. Science is developed to cover
these blind spots in our knowledge of machines, not just of the universe. On
the other hand, the perception of nature is often machine based, not simply
because of the mediation of instruments on perception but because
machines have influenced, indirectly, the ontology of entire scientific
paradigms. For example, into the twenty-first century, the standard theory
of time remains based on the irreversible arrow of entropy that was
encountered and conceptualised, for the first time, in the chambers of the



steam engine before being canonised in the second principle of
thermodynamics.34 It is not an exaggeration to say that the universe is still
perceived nowawdays as from the belly of an industrial engine.

In 1931, with his lecture ‘The Social and Economic Roots of Newton’s
Principia’, Boris Hessen consolidated the history of science and technology
upon the method of historical materialism, arguing that Newton’s
endeavours were indebted to the tools and machines of the time which
happened to be, unsurprisingly, also the main means of production of the
time: water canal transport techniques, water pumps and pulleys used in the
mining industry, new firearms and their ballistic control, and so forth.35

More recently, Peter Galison has accounted for the difference between
Newtonian and Einsteinian physics through analysing the technical
perception of time in their respective ages and the definition of
synchronisation: a centralised universal clockwork maintained a uniform
time in Newton’s case, whereas it was ‘an electromechanical world’
connected by new networks of communication such as the telephone in
Einstein’s case.36 Going back to the industrial age, the historical
epistemology of science and technology suggests that we reconsider the
project of machine intelligence as a prism reflecting multiple forms of
knowledge. Stretching its definition across a larger time scale, the
expression ‘machine intelligence’ ultimately acquires at least four
meanings: (1) the human knowledge of the machine; (2) the knowledge
embodied by the machine’s design; (3) the human tasks automated by the
machine; and (4) the new knowledge of the universe made possible by its
use.

The Machinery Question in the age of AI

The industrial machine is a powerful artefact because it imbricates in one
thing the relations between energy and matter, knowledge and science, but
more importantly between capital and labour. In this sense, the industrial
machine appears to be the incarnation of the many contradictions of
capitalism and a concrete locus of a social and ideological struggle. A
similar fascination with the political centrality of technology has extended
until the present day, reiterating ambivalent impressions of the industrial
age. Both academic techno-determinism and corporate techno-solutionism,



for instance, consider it today as the core of the political question. However,
it would be a gross mistake to consider technology the unique locus of
political conflict. As this book is trying to explicate, social relations and in
particular labour cooperation are the ‘engines’ of technical and political
development. But, in their own terms, such social relations and the category
of labour itself have to be scrutinised. What is labour cooperation made of,
by the way? How was the notion of labour constructed, employed, narrated,
and analysed by the political economy of the nineteenth and twentieth
century? This is not a trivial question, because the idea of labour that is still
used today is an inheritance from the nineteenth century and a product of
the bold political confrontations of that time: of labour as a manual activity
often devoid of any mental component.

Industrial capitalism was not only an energetic intensification of labour
and production; it was also a transformation of the division of labour and
social relations, to the point of becoming the matrix of a new kind of
knowledge production – not only mathematics, mechanics, and physics, but
knowledge of the most diverse kinds. In the early nineteenth century,
Ricardian socialists such as Thompson and Hodgskin were already
discussing the social potentialities and psychic implications of ‘mental
labour’ claiming that knowledge is the first source of labour. Other political
economists, such as Marx, agreed but argued that both mental and manual
labour, without distinction, were the source of collective knowledge. It was
close to the workshops of the industrial age that modern computation,
eventually, was born as the project to mechanise the division of mental
labour, as Babbage experimented with his calculating engines.

This chapter has explored the hypothesis that during the industrial age,
knowledge and intelligence comprised the true hidden transaction between
labour and capital. As we have seen, all labour, without distinction, was and
still is cognitive and knowledge-producing. The most important component
of labour is not energy and motion (which are easy to automate and replace)
but knowledge and intelligence (which are far from being completely
automated in the age of AI). The industrial age was also the moment of the
originary accumulation of technical intelligence as the dispossession of
knowledge from labour. AI is today the continuation of the same process: it
is a systematic mechanisation and capitalisation of collective knowledge
into new apparatuses, into the datasets, algorithms, and statistical models of
machine learning, among other techniques. Ultimately, it is not difficult to



imagine AI as a late avatar of the collective worker, the Gesamtarbeiter that
was for Marx the main actor of industrial production. As we shall see, the
nineteenthcentury Machinery Question is also of signal importance for
figuring out how to question this generalised process of automation in the
age of AI. Aptly, in 2016 the Economist issued a special report on AI
forewarning ‘The Return of the Machinery Question’.37



4
The Origins of Marx’s General Intellect
 

The general intellect of the whole community, male and female, is stunted or perverted in
infancy, or more commonly both, by keeping from women the knowledge possessed by men
… The only and the simple remedy for the evils arising from these almost universal
institutions of the domestic slavery of one half the human race, is utterly to eradicate them.
Give men and women equal civil and political rights.

William Thompson, An Inquiry into the Principles of the Distribution
of Wealth, 18241

It is nearly twenty years since the first impulse was given to the general intellect of this
country, by the introduction of a new mechanical system for teaching reading and writing, by
cheaper and more efficacious methods than those previously in use … The public mind has
infinitely advanced: in despite of all the sneers at the phrase of the ‘march of intellect’, the
fact is undeniable, that the general intellect of the country has greatly progressed. And one
of the first fruits of extended intelligence has been the conviction, now fast becoming
universal, that our system of law, so far from being the best in the world, is an exceedingly
bad one; and stands in the most pressing need of revision and reform.

London Magazine, 18282

The development of fixed capital indicates to what degree general social knowledge has
become a direct force of production, and to what degree, hence, the conditions of the process
of social life itself have come under the control of the general intellect and been transformed
in accordance with it.

Karl Marx, Grundrisse, 18583



The March of Intellect

An 1828 caricature by cartoonist William Heath from the series ‘March of
Intellect’ depicts a giant automaton advancing with long strides and holding
a broom to sweep away a dusty mass of clerks, clergy, and bureaucrats,
representing figures of the old order and obsolete laws (see fig. 4.1). The
automaton’s belly is a steam engine, while its head is made of books of
history, philosophy, and (importantly) mechanics. Its crown reads ‘London
University’. In the background, the goddess of justice lies in ruins,
summoning the automaton: ‘Oh come and deliver me!!!’ While at first the
cartoon might seem a paean to democratic ideals and intellectual advance,
on closer observation, the caricature is intended to ridicule the belief that
the technologies of industrial automation (already resembling robots) might
become a true agent of political change and social emancipation under the
command of public education. Indeed, Heath’s series of satirical engravings
was originally commissioned by the Tories to voice their sarcasm regarding
a potential democratisation of knowledge and technology across all classes.
Nonetheless, by dint of his visionary pen, they became an accidental
manifesto for the progressive camp and the invention of the future.4



Figure 4.1. William Heath, ‘The March of Intellect’, ca. 1828, print, British Museum.

Initiated as a campaign in England during the Industrial Revolution, the
March of Intellect, or ‘March of Mind’, demanded the amelioration of
society’s ills through programmes of public education for the lower
classes.5 The expression ‘March of Intellect’ was introduced by the
industrialist and utopian socialist Robert Owen in a letter to the Times in
1824, remarking that in recent years ‘the human mind has made the most
rapid and extensive strides in the knowledge of human nature, and in
general knowledge’.6 The campaign triggered a reactionary and
unsurprisingly racist backlash: the Times started to mock the ambitions of
the working class under sarcastic headlines of the worst colonial mentality
such as ‘The March of Intellect in Africa’.7 As a campaign for progress in
both literacy and technology, the March of Intellect was part of the so-
called Machinery Question examined in the previous chapter. In 1828 the
London Magazine endorsed the March of Intellect for the benefit of the
‘general intellect of the country’ – which, its editors argued, thanks to mass
education, would understand the need to reform a decaying legislative



system.8 When in 1858 Marx used the expression (in English) ‘general
intellect’ in the famous ‘Fragment on Machines’ of the Grundrisse, he was
echoing the political climate of the March of Intellect and the power of
‘general social knowledge’ to, in his reading, weaken and subvert the chains
of capitalism rather than those of old institutions.9

But it was specifically in William Thompson’s An Inquiry into the
Principles of the Distribution of Wealth (published in 1824, the same year
that Owen launched the March of Intellect) that Marx first encountered the
idea of the general intellect and, more importantly, the argument that
knowledge, once it has been alienated by machines, may become a power
inimical to workers.10 The book contains what is probably the first
systematic account of mental labour – followed by Thomas Hodgskin’s
account in Popular Political Economy (1827) and Charles Babbage’s
project to mechanise mental labour in On the Economy of Machinery and
Manufactures (1832).11 Afterwards, because of the decline of the
Mechanics’ Institutes and tactical decisions within the workers’ movement,
the notion of mental labour encountered a hostile destiny in the Machinery
Question.

Given this backdrop, when twentieth-century authors began to analyse
the so-called knowledge society and thought they were discussing for the
first time forms of symbolic, informational, and digital labour, they were
actually operating in an area of political amnesia. In fact, Marx himself was
partly responsible for bringing about this amnesia.12 While he engaged with
Thompson’s and Hodgskin’s political economy, he considered their
emphasis on mental labour as the celebration of individual creativity – as
the cult of the gifted artisan, the ingenious tool-maker, and the brave
engineer – against labour in common: in Capital, Marx intentionally
replaced the mental labourer with the ‘collective worker’ or
Gesamtarbeiter. Marx’s refusal to employ the concept of mental labour was
due to the difficulty of mobilising collective knowledge into campaigns on
the side of workers. The substance of knowledge and education is such that
they can only be summoned for universalist battles (for the ‘general
intellect of the country’) rather than partisan ones on the side the proletariat.
Besides, since The German Ideology, Hegel’s notion of absolute spirit
appeared to be the antagonist of Marx’s method of historical materialism:
Marx transposed his famous anti-Hegelian passage ‘life is not determined



by consciousness, but consciousness by life’ to industrial England, in order
to claim that labour is not determined by knowledge, but knowledge by
labour.13

Traditionally, for Marxism, the distinction between manual and mental
labour evaporates in the face of capital insofar as any kind of labour is
abstract labour – that is, labour measured and monetised for the benefit of
producing surplus value. What follows shares this traditional starting point
but goes on to depart from orthodox Marxist positions. I wish to consider
that any machinic interface with labour is a social relation, as much as
capital, and that the machine, as much as money, mediates the relation
between labour and capital.14 Thinking with, as well as beyond, Marx, I
want to stress that any technology influences the metrics of abstract labour.
For this purpose, this chapter traces the origins of Marx’s general intellect
in order to reconsider unresolved issues of early political economy, such as
the econometrics of knowledge, that are increasingly relevant today.15 In
the current debates on the alienation of collective knowledge into corporate
AI, we are, in fact, still hearing the clunky echoes of the nineteenth-century
Machinery Question.

The discovery of Marx’s ‘Fragment on Machines’

Sophisticated notions of mental labour and the knowledge economy were
offered at the dawn of the Victorian age, and already then were given
radical interpretations. Marx, for example, addressed the economic roles of
skill, knowledge, and science in his Grundrisse, specifically in the section
that has become known as the ‘Fragment on Machines’. There Marx
explored an unorthodox hypothesis which was not to be reiterated in
Capital: that because of the accumulation of the general intellect
(particularly as scientific and technical knowledge embodied in machinery),
labour would become secondary to capitalist accumulation, causing a crisis
for the labour theory of value and blowing the foundations of capitalism
skywards.16 After 1989, Marx’s ‘Fragment on Machines’ was revived by
Italian post-operaismo as a prescient critique of the transition to post-
Fordism and the paradigms of a knowledge society and an information
economy.17 Since then, many authors – including some outside Marxism –
have mobilised this esoteric fragment as a prophecy of different economic



crises, especially following the internet bubble and 2000 stock market
crash. The way Marx’s ‘Fragment on Machines’ has reached even the
debate on artificial intelligence and post-capitalism is a philological
adventure that is worth recapitulating.18

The Grundrisse is ‘a series of seven notebooks rough-drafted by Marx,
chiefly with the purpose of self-clarification, during the winter of 1857–
8’.19 Indeed, the notebooks frequently reveal the method of inquiry and
subtext of Capital, published a decade later. Yet the Grundrisse remained
unpublished until the twentieth century – in Moscow in 1939 and Berlin in
1953 – which means that its reception entered Marxist debates almost a
century after the publication of Capital. While a partial Italian translation
started to circulate in 1956, a complete English translation was to become
available only in 1973.20 The denomination ‘Fragment on Machines’ to
define specifically notebooks 6 and 7 of the Grundrisse became canonical
due to the editorial choice of Raniero Panzieri, who published their
translation under the title ‘Frammento sulle macchine’ in the 1964 issue of
Quaderni Rossi, the journal of Italian operaismo.21 In the same year, the
German philosopher Herbert Marcuse drew upon notebooks 6 and 7 in his
One-Dimensional Man, while discussing the emancipatory potential of
automation.22 In 1972, in a footnote in AntiOedipus, Gilles Deleuze and
Felix Guattari also refer to them as the ‘chapter on automation’.23 That
same year, they were partially published in English as ‘Notes on Machines’
in the journal Economy and Society.24 In 1978 Antonio Negri gave an
extended commentary on the ‘chapter on machines’ in his Marx Beyond
Marx seminar in Paris (at the invitation of Louis Althusser), reading it
against the background of the social antagonism of the preceding decade.
But it was only after the fall of the Berlin Wall that Italian post-operaismo
rediscovered and promoted the ‘Fragment on Machines’. In 1990 the
philosopher Paolo Virno drew attention to the notion of general intellect in
the journal Luogo comune. Paying ironic tribute to the Spaghetti Western,
he was already warning about the cycles of the concept’s revival:

Often in westerns the hero, when faced by the most concrete of dilemmas, cites a passage
from the Old Testament … This is how Karl Marx’s ‘Fragment on machines’ has been read
and cited from the early 1960s onwards. We have referred back many times to these pages
… in order to make some sense out of the unprecedented quality of workers’ strikes, of the
introduction of robots into the assembly lines and computers into the offices, and of certain



kinds of youth behavior. The history of the ‘Fragment’s’ successive interpretations is a
history of crises and of new beginnings.25

Virno explained that the ‘Fragment’ was quoted in the 1960s to question
the supposed neutrality of science in industrial production, in the 1970s as a
critique of the ideology of labour in state socialism, and, finally, in the
1980s as a recognition of the tendencies of post-Fordism, yet without any
emancipatory or conflictual reversal, as Marx would have wished. While
Marxist scholars aimed for greater philological rigour in their reading of the
general intellect, militants updated its interpretation in the context of current
social transformations and struggles.26 Post-operaismo famously forged
new antagonistic concepts out of Marx’s general intellect, such as
‘immaterial labour’, ‘mass intellectuality’, and ‘cognitive capitalism’,
stressing the autonomy of ‘living knowledge’ against capital. A lesson
worth recalling from the Machinery Question discussed in the previous
chapter, however, is that the issue of collective knowledge should never be
separated from its embodiment in machines, instruments of measurement,
and Kulturtechniken. Indeed, the employment of artificial intelligence in the
twentieth century has abruptly reminded everyone that knowledge can be
analysed, measured, and automated as successfully as manual labour.

Scholars have wondered where the expression ‘general intellect’ came
from, as it appears only once, in English, in the Grundrisse. Virno thought
he detected the echo of Aristotle’s nous poietikos and Rousseau’s volonté
générale.27 As the ‘Fragment’ follows strains of argumentation that are
similar to chapters 14 and 15 of Capital on the division of labour and
machinery, it is not surprising that the missing sources can be found in the
footnotes to these chapters of Capital. These common strains of
argumentation echo, fundamentally, Babbage’s theory of machinery, and it
is by following Marx’s reading of Babbage in chapter 14 of Capital that the
notion of general intellect can be reliably traced back to William
Thompson’s notion of ‘knowledge labour’.

Marx’s interpretation of Babbage

In 1832, Babbage advised his fellow industrialists, ‘The workshops of
[England] contain within them a rich mine of knowledge, too generally
neglected by the wealthier classes.’28 Following this invitation to the



industrial workshops as ‘mundane places of intelligence’, Simon Schaffer
finds that ‘Babbage’s most penetrating London reader’ was Marx.29 Indeed,
Marx had already quoted Babbage in The Poverty of Philosophy during his
exile in Brussels in 1847 and, since then, adopted two analytical principles
that were to become pivotal in Capital in drawing a robust theory of the
machine and in grounding the theory of relative surplus value.

The first is the labour theory of the machine, which states that a new
machine comes to imitate and replace a previous division of labour. As
examined previously, this is an idea already formulated by Adam Smith, but
better articulated by Babbage due to his greater technical experience. The
second analytical principle is the ‘Babbage principle’, also discussed earlier,
which has been renamed here the principle of labour calculation. It states
that the organisation of a production process in small tasks (division of
labour) allows exactly the necessary quantity of labour to be purchased for
each task (division of value). In this respect, the division of labour provides
not only the design of machinery but also an economic configuration to
calibrate and calculate surplus labour extraction. In complex forms of
management such as Taylorism, the principle of surplus labour modulation
opens onto a clockwork view of labour, which can be further subdivided
and recomposed into algorithmic assemblages. The synthesis of both
analytical principles ideally describes the machine as an apparatus that
actively projects back a new articulation and metrics of labour. In the pages
of Capital, the industrial machine appears to be not just a regulator to
discipline labour but also a calculator to measure relative surplus value,
echoing the numerical exactitude of Babbage’s calculating engines.

Here, I will read the Grundrisse and Capital through the lens of
Babbage’s two analytical principles. We will see how Babbage’s labour
theory of the machine is used by Marx to raise the figure of the collective
worker as a sort of reincarnation of the general intellect and, furthermore,
how Babbage’s principle of modulation of surplus labour is used to sketch
the idea of relative surplus value. Taken together, Babbage’s two principles
show that the general intellect of the Grundrisse evolves in Capital into a
machinic collective worker, almost with the features of a proto-cybernetic
organism, and the industrial machine becomes a calculator of the relative
surplus value that this cyborg produces.

In discussing the relation between labour and machinery, knowledge
and capital, Marx found himself embedded in a hybrid dialectics between



German idealism and British political economy. The similar argumentation
in the Grundrisse and Capital in the sections on machinery and division of
labour follows four movements, to which I will now turn: (1) the invention
of machinery through the division of labour, (2) the alienation of knowledge
by machinery, (3) the devaluation of capital by knowledge accumulation,
and (4) the rise of the collective worker.

The invention of machinery through the division of labour

Who is the inventor of the machine? The worker, the engineer, or the
factory’s master? Science, cunning, or labour? As a fellow of the Royal
Society, Babbage publicly praised the gifts of science, but theoretically
maintained that machinery emerges as a replacement of the division of
labour. As already discussed, Babbage was committed to a labour theory of
the machine, since, for him, the design of a new machine always imitates
the design of a previous division of labour. In The Poverty of Philosophy
(1847), Marx already mobilised Babbage against Proudhon, who thought
that machinery is the antithesis of the division of labour. Marx argued the
opposite, that machinery emerges as the synthesis of the division of labour:
‘When, by the division of labour, each particular operation has been
simplified to the use of a single instrument, the linking up of all these
instruments, set in motion by a single engine, constitutes – a machine.’30

Later, in the Grundrisse, Marx kept on drawing on Babbage to remark that
technology is not created by the ‘analysis’ of nature by science but by the
‘analysis’ of labour:

It is, firstly, the analysis [Analyse] and application of mechanical and chemical laws, arising
directly out of science, which enables the machine to perform the same labour as that
previously performed by the worker. However, the development of machinery along this
path occurs only when large industry has already reached a higher stage, and all the sciences
have been pressed into the service of capital … Invention then becomes a business, and the
application of science to direct production itself becomes a prospect which determines and
solicits it. But this is not the road along which machinery, by and large, arose, and even less
the road on which it progresses in detail. This road is, rather, dissection [Analyse] – through
the division of labour, which gradually transforms the workers’ operations into more and
more mechanical ones, so that at a certain point a mechanism can step into their places.31

Marx also adopted Babbage’s theory methodologically, including in
Capital, where the chapter on machinery follows the chapter on the division



of labour. There exists a structural homology between the design of
machinery, and the division of labour, as Marx’s argument highlights: ‘The
machine is a mechanism that, after being set in motion, performs with its
tools the same operations as the worker formerly did with similar tools.’32

In a footnote, he refers to Babbage’s synthetic definition of machine (‘The
union of all these simple instruments, set in motion by a motor, constitutes a
machine’) and offers his own paraphrase:

The machine, which is the starting-point of the industrial revolution, replaces the worker,
who handles a single tool, by a mechanism operating with a number of similar tools and set
in motion by a single motive power, whatever the form of that power.33

It is at this point of Capital that Marx advances a further analytical
principle that would go on to have an enormous influence on the
methodology of the history of science and technology in the twentieth
century.34 After challenging the belief that science, rather than labour, is the
origin of the machine, Marx reverses the perception of the steam engine as
the prime catalyst of the Industrial Revolution. Instead, he contends that it
is the growth of the division of labour, its tools and ‘tooling machines’, that
‘requires a mightier moving power than that of man’, a source of energy
that will be found in steam.35 It was not the invention of the steam engine
(means of production) that triggered the Industrial Revolution (as it is
popular to theorize in the ecological discourse), but rather the developments
of capital and labour (relations of production) demanding a more powerful
source of energy:36

The steam-engine itself, such as it was at its invention during the manufacturing period at the
close of the seventeenth century, and such as it continued to be down to 1780, did not give
rise to any industrial revolution. It was, on the contrary, the invention of [tooling] machines
[Werkzeugmaschinen] that made a revolution in the form of steam-engines necessary.37

The ‘mechanical monster’ of the industrial factory was summoned first
by labour and then accelerated by steam power, not the other way around.38

Marx was clear: the genesis of technology is an emergent process driven by
the division of labour. It is from the materiality of collective labour, from
conscious and unconscious forms of cooperation, that extended apparatuses
of machines emerge. Here, intelligence resides in the ramifications of
human cooperation rather than in individual mental labour. Machine



intelligence mirrors, embodies, and amplifies the analytical intelligence of
collective labour.39

The alienation of knowledge by machinery

‘What distinguishes the worst architect from the best of bees is that the
architect builds the cell in his mind before he constructs it in wax.’40 This is
Marx’s recognition, in Capital, of labour as a mental and individual activity.
The collective division of labour, or labour in common, however, remains
the political inventor of the machine.41 A process of alienation of skill and
knowledge starts as soon as machinery appears in front and in place of
labour. Tools pass from the hands of the worker to the hands of the
machine, and the same process happens to workers’ knowledge: ‘Along
with the tool, the skill of the worker in handling it passes over to the
machine.’42 As such, the machine is but a crystallisation of collective
knowledge. Marx condemns this alienation of the human mind, seconding
Owen:

Since the general introduction of soulless mechanisms in British manufactures, people have
with rare exceptions been treated as a secondary and subordinate machine, and far more
attention has been given to the perfection of the raw materials of wood and metals than to
those of body and spirit.43

The introduction of machinery marks a dramatic dialectical turn in the
history of labour, whereby the worker ceases to be the subject of the
machine and becomes the object of capital: ‘The hand tool makes the
worker independent – posits him as proprietor. Machinery – as fixed capital
– posits him as dependent, posits him as appropriated.’44 This shift in power
between human and machine in the Victorian age is also the inception of a
new imagery, in which machines acquire features of the living and the
workers those of automata:45

[It] is the machine which possesses skill and strength in place of the worker, is itself the
virtuoso, with a soul of its own in the mechanical laws acting through it … The worker’s
activity, reduced to a mere abstraction of activity, is determined and regulated on all sides by
the movement of the machinery, and not the opposite. The science which compels the
inanimate limbs of the machinery, by their construction, to act purposefully, as an
automaton, does not exist in the worker’s consciousness, but rather acts upon him through
the machine as an alien power, as the power of the machine itself.46



The reflection on the alienation of knowledge from workers continues
in Capital, where Marx has the process of knowledge extraction culminate
in the full separation of science as a productive agent from labour:

The knowledge, judgement and will which, even though to a small extent, are exercised by
the independent peasant or handicraftsman, in the same way as the savage makes the whole
art of war consist in the exercise of his personal cunning, are faculties now required only for
the workshop as a whole. The possibility of an intelligent direction of production expands in
one direction, because it vanishes in many others. What is lost by the specialized workers is
concentrated in the capital which confronts them. It is a result of the division of labour in
manufacture that the worker is brought face to face with the intellectual potentialities
[geistige Potenzen] of the material process of production as the property of another and as a
power which rules over him. This process of separation starts in simple co-operation, where
the capitalist represents to the individual workers the unity and the will of the whole body of
social labour. It is developed in manufacture, which mutilates the worker, turning him into a
fragment of himself. It is completed in large-scale industry, which makes science a
potentiality for production which is distinct from labour and presses it into the service of
capital.47

Marx comments upon the latter passage from Capital with a footnote to
Thompson’s Inquiry into the Principles of the Distribution of Wealth which
is necessary to repeat:

‘The man of knowledge and the productive labourer come to be widely divided from each
other, and knowledge, instead of remaining the handmaid of labour in the hand of the
labourer to increase his productive powers … has almost everywhere arrayed itself against
labour.’ ‘Knowledge’ becomes ‘an instrument, capable of being detached from labour and
opposed to it.’48

Thompson provides a definition of knowledge labour that predates the
twentieth-century theorists of the knowledge society and cognitive labour.
As seen in the previous chapter, Thompson always included in the
definition of labour ‘the quantity of knowledge requisite for its direction’
without which labour ‘would be no more than brute force’.49 In a polemic
typical of Owenism, Thompson described machinery humiliating the
‘general intellectual powers’ of the workers, who were reduced to ‘drilled
automata’. Accordingly, the factory is an apparatus to keep the workers
‘ignorant of the secret springs which regulated the machine and to repress
the general powers of their minds’ so ‘that the fruits of their own labors
were by a hundred contrivances taken away from them’.50 In different
passages, Thompson used the expressions ‘general intellect’, ‘general
intellectual power’, ‘general knowledge’, and ‘general power of the minds’
in direct resonance with identical or equivalent terms used by Marx in the



Grundrisse, such as ‘general social labour’, ‘general scientific labour’,
‘general productive forces of the human brain’, ‘general social knowledge’,
and ‘social intellect’.51 Importantly, as indicated in the opening epigraph to
this chapter, Thompson drew a direct link between the construction of a
primarily white male general intellect and issues of gendered and racial
discrimination. In Thompson’s view, people are racist and chauvinist due to
the lack of proper knowledge and education:

Why also, it may be asked in reply, has the slavery of the blacks, and of women, been
established? Because the whites in the one case, because the men in the other, made the
laws: because knowledge had not been obtained on these subjects, the whites and the men
erroneously conceiving it to be their interest to oppress blacks and women.52

Marx, for his part, also recognised the psychopathologies of industrial
labour and the tactics to keep the workforce as illiterate as possible. He
quoted Adam Smith’s mentor, the Scottish philosopher Adam Ferguson,
who had reached this conclusion a century earlier:

Ignorance is the mother of industry as well as of superstition. Reflection and fancy are
subject to err; but a habit of moving the hand or the foot is independent of either.
Manufactures, accordingly, prosper most where the mind is least consulted, and where the
workshop may … be considered as an engine, the parts of which are men.53

This should serve to remind us that the public mythology of artificial
intelligence has always operated on the side of capital together with a
hidden agenda to foster human stupidity, including the promulgation of
racist and sexist ideologies.

The devaluation of capital by knowledge accumulation

What is the economic value of knowledge and science? What role do they
play in capitalist accumulation? Marx explored these questions in an age
that was flourishing with mechanical ingenuity, technical intelligence, and
large infrastructures, such as railway and telegraph networks. In the passage
on the general intellect, Marx considered knowledge in three ways: first, as
a ‘direct force of production’ (unmittelbaren Produktivkraft); second, under
the form of the ‘social forces of production’ (gesellschaftlichen
Produktivkräfte); and third, as social practice (gesellschaftlichen Praxis),
which is not abstract knowledge per se:



Nature builds no machines, no locomotives, railways, *electric telegraphs*, *self-acting
mules* etc. These are products of human industry; natural material transformed into organs
of the human will over nature, or of human participation in nature. They are organs of the
human brain, created by the human hand; the power of knowledge, objectified. The
development of fixed capital indicates to what degree general social *knowledge* has
become a direct force of production, and to what degree, hence, the conditions of the process
of social life itself have come under the control of the *general intellect* and been
transformed in accordance with it. To what degree the powers of social production have been
produced, not only in the form of knowledge, but also as immediate organs of social
practice, of the real life process.54

The general intellect becomes a transformative agent of society in a way
that clearly echoes Thompson’s optimism about the ‘distribution of
knowledge’ as conducive to ‘voluntary equality in the distribution of
wealth’. The ‘Fragment on Machines’ contains an unresolved tension
between knowledge objectified in machinery (as ‘development of fixed
capital’) and knowledge expressed by social production (as ‘development of
the social individual’). Marx considers the primacy of knowledge in the
production process and, then, the primacy of praxis over knowledge itself.
The same thesis emerges in Capital, where Marx registers the stress of
industrial labour on the workers’ nervous system. Marx compares the
economic value of individual skill against that of science. A realistic
competition between the two is unlikely, since after a long process of
‘separation of the intellectual faculties’, the special skills of the worker
vanish before the magnitude of the science, natural energy, and social
labour that animates machinery:

The separation of the intellectual faculties of the production process from manual labour, and
the transformation of those faculties into powers exercised by capital over labour, is …
finally completed by large-scale industry erected on the foundation of machinery. The
special skill of each individual machine-operator, who has now been deprived of all
significance, vanishes as an infinitesimal quantity in the face of the science, the gigantic
natural forces, and the mass of social labour embodied in the system of machinery, which,
together with those three forces, constitutes the power of the ‘master’.55

In the ‘Fragment’, we have not only the recognition of knowledge as an
alien power embodied in machinery (as found in Thompson) but also the
attempt to assess the magnitude of its valorisation (which is missing in the
latter). Here, Marx uses a criterion to assess knowledge accumulation that
derives from the work of Thomas Hodgskin – a Ricardian socialist
introduced in the previous chapter – often quoting his book Popular
Political Economy (1827) and also praising his Labour Defended against



the Claims of Capital (1825). Hodgskin pitted a positive emphasis on fixed
capital as a concrete accumulation of past labour, knowledge, and science
against the ‘fiction’ of circulating capital. In the Grundrisse, there is an
echo of Hodgskin’s ideas in Marx’s claim that machinery is the ‘most
adequate form of fixed capital’:

The accumulation of knowledge and of skill, of the general productive forces of the social
brain, is thus absorbed into capital, as opposed to labour, and hence appears as an attribute of
capital, and more specifically of fixed capital, in so far as it enters into the production
process as a means of production proper. Machinery appears, then, as the most adequate
form of fixed capital, and fixed capital … appears as the most adequate form of capital as
such.56

Modernising the Baconian motto ‘Knowledge is power’, authors of the
industrial age such as Babbage, Thompson, and Hodgskin argued that
knowledge is, without doubt, a productive and economic force. For
Hodgskin, as much as for Thompson, it should be repeated, labour is
primarily mental labour – that is, knowledge. ‘Mental labour’ is

the labour of observing and ascertaining by what means the material world will give us the
most wealth … Unless there be mental labour, there can be no manual dexterity; and no
capability of inventing machines. It therefore is essential to production.57

Importantly, for Hodgskin, there are neither intellectual hierarchies, nor
division of hand and mind, nor a labour aristocracy in need of promotion:
‘both mental and bodily labour are practised by almost every individual.’58

In fact, Marx quotes Hodgskin in Capital to stress that skill is a common
resource which is shared among workers and passes from one generation to
the next.59 Here, knowledge is a power that is collectively produced and
shared, and this power constitutes (together with machinery and
infrastructures) the core of fixed capital that must be reappropriated by
workers (against the ‘fiction’ of circulating capital).60

The most visionary passages of the Grundrisse refer to the crisis of
capitalism due to the crisis of the centrality of labour, and therefore of the
labour theory of value – which is to say, due to the fact that ‘direct labour
and its quantity disappear as the determinant principle of production …
compared to general scientific labour, technological application of natural
sciences … and to the general productive force arising from social
combination [Gliederung]’.61 Further, says Marx:



Capital itself is the moving contradiction, [in] that it presses to reduce labour time to a
minimum, while it posits labour time, on the other side, as sole measure and source of wealth
… On the one side, then, it calls to life all the powers of science and of nature, as of social
combination and of social intercourse, in order to make the creation of wealth independent
(relatively) of the labour time employed on it. On the other side, it wants to use labour time
as the measuring rod for the giant social forces thereby created, and to confine them within
the limits required to maintain the already created value as value. Forces of production and
social relations – two different sides of the development of the social individual – appear to
capital as mere means, and are merely means for it to produce on its limited foundation. In
fact, however, they are the material conditions to blow this foundation sky-high.62

What looks like a contradiction in Marx’s system (the obliteration of the
political centrality of labour) is in fact the consequence of such centrality.
Everywhere in the world, workers have been working enough! They have
been producing so much and for so long that their past accumulated labour
(under the forms of machinery, infrastructures, and collective knowledge)
affects the rate of profit and slows down the economy. This is the thesis of
the productivity of labour pitted against the unproductivity of capital, found
in Hodgskin’s Labour Defended against Capital. Marx, for his part, tries to
prove that the accumulation of fixed capital (as machinery, infrastructures,
collective knowledge, and science) could have profound side effects on the
side of circulating capital (beside the chance of an overproduction crisis). In
the Grundrisse, he accordingly explores the hypothesis that a growth of
collective and technical knowledge could undermine capital’s dominance,
as Thompson and Hodgskin envisioned. Ultimately, in Capital, the utopian
enthusiasms of the Grundrisse are reabsorbed by a realistic calculation of
relative surplus value, which is adopted as the metrics of machinery and
implicit metrics of knowledge value as well.

The rise of the collective worker

In Capital, Marx replies to the Machinery Question by casting an extended
social actor, the collective worker (Gesamtarbeiter), at the centre of the
industrial theatre, whereas, for the bourgeoisie, it was an engineer with a
steam engine. The figure of the collective worker replaces the personality
cult of the inventor (individual mental labour) but also the idea of the
general intellect (collective mental labour). Drawing on Babbage’s labour
theory of the machine, which explains the machine as the embodiment of
the division of labour, Marx asserts the collective worker as the true



political inventor of technology. The ambiguous hypothesis of the
knowledge theory of value of the Grundrisse is thus finally grounded on an
empirical basis: intelligence is logically materialised in the ramifications of
the division of labour. The collective worker is a personification of the
general intellect and, precisely, of its mechanisation.

Marx follows closely Babbage’s labour theory of the machine in both
the Grundrisse and Capital, but only in the latter does he make use of
Babbage’s principle of surplus labour modulation, which helps him to
sketch the concept of relative surplus value and to measure the productivity
of labour and machinery. Babbage’s principle as quoted by Marx is as
follows:

The master manufacturer, by dividing the work to be executed into different processes, each
requiring different degrees of skill or of force, can purchase exactly that precise quantity of
both which is necessary for each process; whereas, if the whole work were executed by one
workman, that person must possess sufficient skill to perform the most difficult, and
sufficient strength to execute the most laborious of the operations into which the art is
divided.63

Marx reverses the mystification of ‘the master manufacturer’ by
restoring to the centre of the Babbage principle the collective worker who,
needless to say, becomes now the main actor of the division of labour. The
collective worker acquires features of a super-organism:

The collective worker, formed out of the combination of a number of individual specialized
workers, is the item of machinery specifically characteristic of the manufacturing period …
In one operation he must exert more strength, in another more skill, in another more
attention; and the same individual does not possess all these qualities in an equal degree …
After the various operations have been separated, made independent and isolated, the
workers are divided, classified and grouped according to their predominant qualities … The
collective worker now possesses all the qualities necessary for production in an equal degree
of excellence, and expends them in the most economical way by exclusively employing all
his organs, individualized in particular workers or groups of workers, in performing their
special functions.64

In Marx’s language, the collective worker becomes an ‘item of
machinery’, a ‘social mechanism’, a ‘collective working organism’.65 Vivid
machinic metaphors accompany the reincarnation of the general intellect as
collective worker. The prehistory of the cyborg can be read between the
lines of Capital:

The social mechanism of production, which is made up of numerous individual specialized
workers, belongs to the capitalist … Not only is the specialized work distributed among the



different individuals, but the individual himself is divided up, and transformed into the
automatic motor of a detail operation.66

The ‘Fragment on Machines’ emphasised not only the growing
economic role of knowledge and science but also the role of social
cooperation – that is, the growing role of the general machinery of social
relations beyond the factory system. In a movement that resembles that of
the construction of the Gesamtarbeiter within the factory, in the Grundrisse
Marx sets ‘the social individual … as the great foundationstone of
production and of wealth’ in the society to come:

[The worker] steps to the side of the production process instead of being its chief actor. In
this transformation, it is neither the direct human labour he himself performs, nor the time
during which he works, but rather the appropriation of his own general productive power, his
understanding of nature and his mastery over it by virtue of his presence as a social body – it
is, in a word, the development of the social individual which appears as the great foundation-
stone of production and of wealth.67

It seems that, with the transmutation of the general intellect into the
collective worker, Marx also abandons the theory of capitalism’s implosion
due to the overproduction of knowledge as fixed capital. Capitalism will no
longer collapse due to the accumulation of knowledge, because knowledge
itself helps new apparatuses to improve the extraction of surplus value.
Marxist scholar Michael Heinrich has noted that in Capital, ‘when dealing
with the production of relative surplus value, we can find an implicit
critique of the “Fragment on machines” ‘.68 Here, Marx appears to employ
Babbage’s principle of the modulation of surplus labour to design a theory
of relative surplus value that recognises capitalism’s capacity to maintain
exploitation in equilibrium. According to Marx, surplus value can be
augmented not just by reducing wages and material costs but also by
increasing the productivity of labour in general – that is, by redesigning the
division of labour and machines. If, according to Babbage’s principle, the
division of labour is an apparatus to modulate regimes of skill and therefore
different regimes of salary according to skill, the division of labour
becomes a modulation of relative surplus value. Being itself an embodiment
of the division of labour, the machine then becomes the apparatus to
discipline labour and regulate the extraction of relative surplus value.69 As
in Babbage’s vision, the machine becomes a calculating engine – in this
case, an instrument for the measurement of surplus value.



The machine is a social relation, not a thing

In the twentieth century, Harry Braverman was probably the first Marxist to
rediscover Babbage’s pioneering experiments in computation and influence
on Marx’s theory of the division of labour.70 While Marx read Thompson,
Hodgskin, and Babbage, he never employed the notion of mental labour,
probably in order to avoid supporting a labour aristocracy of skilled artisans
as a political subject separate from the working class. For Marx, labour is
always collective: there is no individual labour that is more prestigious than
others, and, therefore, mental labour is always general; the mind is by
definition social. Rather than a knowledge theory of labour that grants
primacy to conscious activity, like the one in Thompson and Hodgskin,
Marx maintains a labour theory of knowledge that recognises the cognitive
import of forms of labour that are social, distributed, spontaneous, and
unconscious. Intelligence emerges from the abstract assemblage of workers’
simple gestures and microdecisions, even and especially those which are
unconscious.71 In the general intellect studies and the history of technology,
these are the in-between worlds of collective intelligence and unconscious
cooperation, but also those of ‘mechanised knowledge’ and ‘mindful
mechanics’.72 It ends up being Babbage who provides Marx with an
operative paradigm to overcome Hegel’s Geist and imbricate knowledge,
science, and the general intellect into production.

As already stressed, the distinction between manual and mental labour
disappears in Marxism because, from the abstract point of view of capital,
all waged labour, without distinction, produces surplus value; all labour is
abstract labour. However, the abstract eye of capital that regulates the
labour theory of value employs a specific instrument to measure labour: the
clock. In this way, what looks like a universal law has to deal with the
metrics of a very mundane technology; after all, clocks are not universal.73

Machines can impose a metrics of labour other than time, as has recently
happened with social data analytics. As much as new instruments define
new domains of science, likewise they define new domains of labour after
being invented by labour itself.74 Any new machine is a new configuration
of space, time, and social relations, and it projects new metrics of such
diagrams.75 In the Victorian age, a metrology of mental labour existed only
in an embryonic state. A rudimentary econometrics of knowledge begins to



emerge only in the twentieth century with the first theory of information.
The thesis of this chapter is that Marx’s labour theory of value did not
resolve the metrics for the domains of knowledge and intelligence, which
had to be explored in the articulation of the machine design and in the
Babbage principle.

Following Braverman and Schaffer, one could add that Babbage
provided not just a labour theory of the machine but a labour theory of
machine intelligence.76 Indeed, Babbage’s calculating engines (‘intelligent
machines’ of their age) were an implementation of the analytical eye of the
factory’s master. Cousins of Jeremy Bentham’s panopticon, they were
instruments, simultaneously, of surveillance and measurement of labour. It
is this idea that we should consider and apply to the age of artificial
intelligence and its political critique, although reversing its polarisation, in
order to declare computing infrastructures a concretion of labour in
common.77



5
The Abstraction of Labour
 

Cybernetics recomposes globally and organically the functions of the general worker that
are pulverized into individual micro-decisions: the ‘bit’ links up the atomized worker to the
‘figures’ of the ‘Plan’.

Romano Alquati, 19631

The bifurcation of energy and information

With unusual insight, the French philosopher Gilbert Simondon once
challenged the common understanding of the industrial age. He wrote: ‘The
industrial modality appears when the source of information and the source
of energy separate, namely when the Human Being is merely the source of
information, and Nature is required to furnish the energy. The machine is
different from the tool in that it is a relay: it has two different entry points,
that of energy and that of information.’2 After all, the appearance of a
modern notion of information is usually associated with mass media such as
press, telegraph, radio, and television – surely not with an industrial
machine. Instead, Simondon proposed to see the industrial machine already
as an info-mechanical relay because, for the first time, it was separating



labour into energy (which was provided by natural resources such as water
and coal) and information (the conscious movements and instructions of
workers supervising and controlling the machine). According to
Simondon’s understanding, the traditional tool would be a design in which
energy and information are still united: with the hammer, for example, the
preindustrial artisan was still giving form and motion in the same gesture.
This premodern unity of hand and mind was to be systematically disrupted
by the industrial division of labour, as has been seen in chapter 3 revisiting
the Machinery Question. Although it is often repeated that automation
replaces labour, Simondon illustrated how automation actually displaces
labour and bifurcates it into opposing lineages and hierarchies of manual
and mental skill.

Writing at the end of the 1950s, in the France of the economic boom,
Simondon was reading the industrial age under the influence of new
technologies such as cybernetics which were also giving momentum to
post-war modernist expectations.3 Information was then an emerging notion
that also affected the definition of labour. More recently, the Swedish
scholar Andreas Malm has framed the industrial age from a different angle,
given the current concerns about climate change and environmental
degradation: the economy of energy.

Malm has argued, understandably, that the rise of the industrial mode of
production was propelled by a stable and versatile form of energy, which
was found in coal after the use of waterpower.4 But according to him, coal
contributed to the acceleration of industrial capitalism not just because of its
energetic potential, but because its physical properties, such as lightness,
homogeneity, and measurability, matched perfectly the new abstract
dimensions of capital. Steam engines replaced water mills not because coal
was cheaper and more abundant than water, but because it provided a more
stable flow of power than rainfalls and allowed factories to move close to
urban areas, where the working class was living at the time. Malm has
registered in this way the energetic rationale for the slow emergence of
fossil capitalism out of the manufacturing age. It took roughly forty years
for the steam engine to be adopted in the place of the water mill: if coal
came to be used across the full spectrum of production, it was because it
was the most adequate source of abstract energy, where ‘abstract’ means
easily computable in terms of cost, transport, stock, performance, and social
organisation.



Moreover, it was also thanks to the steam engine that coal was turned
into a key component of industrial capitalism, but precisely because this
technological innovation could turn its energy potential into a stable and
continuous motion, as Malm has noticed:

For coal to be universalised as a fuel for all sorts of commodity production, it had to be
turned into a source of mechanical energy – and, more precisely, of rotary motion. Only by
coupling the combustion of coal to the rotation of a wheel could fossil fuels be made to fire
the general process of growth: increased production – and transportation – of all kinds of
commodities. This is why James Watt’s steam engine is widely identified as the fatal
breakthrough into a warmer world.5

The rise of the steam engine and the adoption of coal, however, were
not autonomous drivers of industrial development in their own: they were
responding to more profound economic dynamics such as a new regime of
labour exploitation. Capitalism brought about a need for a more streamlined
– more abstract – system of organizing the workforce. This involved
utilising the clock to accurately measure labour time and implementing a
precise division of the labour space, all of which were made possible under
the supervision of the factory’s master. The energetic versatility of coal and
the mechanical exactitude of steam engines helped consolidate the new
spatio-temporal abstractions of industrial capitalism.

Extending Malm’s analysis to include Simondon’s insight, one may add
that the abstract properties of information emerged together with these
spatio-temporal abstractions and the new characteristics of fossil energy,
i.e., its homogeneous carbon chains, which made coal easier to be
quantified and computed than traditional sources, such as water and animal
power. What should be recognised in the gears of the industrial machine,
then, is the bifurcation and coupling at the same time of abstract energy (or
standardised motion), and abstract form (or information), both understood
as quantifiable operations and means of production.6

If human labour was separated into abstract energy and abstract forms,
this was also thanks to two new technologies of control: feedback devices
like James Watt’s steam governor (1788) and controllers like the Jacquard
loom’s punched card (1801).7 The steam governor was a device to maintain
the constant output of an engine by regulating its fuel input in real time. The
punched card was a data device to store instructions of textile patterns. To
be more precise, Watt’s governor turned engine impulses into abstract
motion – that is, constant rotary motion – and Jacquard’s punched cards



turned manual instructions into information – that is, computable
knowledge. These two devices can be considered retrospectively as the first
cybernetic devices. Watt’s governor was the first example of an exact
information feedback system, while the Jacquard loom’s punched card
would be adopted by IBM as standard storage format, almost unchanged
throughout the twentieth century.

A note on the controversy of abstract labour

It was Hegel who saw labour as an abstraction that forms machines and
subjectivity and defined ‘abstract labour’ for the first time during his 1805–
6 Jena lectures, interpreting most likely Adam Smith’s passages on the
division of labour and the invention of machines:

Man’s labor itself becomes entirely mechanical, belonging to a manysided determinacy. But
the more abstract [his labor] becomes, the more he himself is mere abstract activity. And
consequently he is in a position to withdraw himself from labor and to substitute for his own
activity that of external nature. He needs mere motion, and this he finds in external nature. In
other words, pure motion is precisely the relation of the abstract forms of space and time –
the abstract external activity, the machine.8

Later, in the Philosophy of Right (1820), Hegel kept defining abstract
labour in a similar way: ‘the abstraction of production makes work
increasingly mechanical, so that the human being is eventually able to step
aside and let a machine take his place.’9 Marx subsequently hijacked
Hegel’s interpretation and declared that the social abstraction of concern
was not only the division of labour but also wage labour, that is, the rule of
capital over labour. Capitalism effectively turned human labour into an
abstraction, but this abstraction was the commodity form. Under industrial
capitalism, labour was quantified in abstract time units, rendered a general
equivalent throughout society, and traded as a commodity like any other, in
fact as the very substance of all commodities.10 Marx saw the abstraction of
labour primarily as a function of capital, as a wage relation.

During the industrial era, however, the process of abstraction affected
space, time, energy, labour, and knowledge in different ways, and this
power of abstraction cannot be considered an expression of
technocapitalism alone. In fact, everyone lays claim to abstraction. But to



whom does the power of abstraction truly belong, at the end? Who or what
possesses the political agency that shapes the social abstractions of history?

The labour of information

The historian James Beniger argues that between the late nineteenth and
mid-twentieth centuries, information technologies emerged because of the
economic boom of Western countries and the need to govern industrial
production and distribution. In other words, it was the economic
acceleration which prompted the transformation of analogue media into
numerical information. The genesis of the paradigms of cybernetics and
information theory responded to a ‘crisis of control’ of Western capitalism
that had to manage a commodity surplus and new large infrastructures of
distribution. Rather than information revolution, as it is often styled,
Beniger termed this development as the oxymoronic control revolution
(which is a fitting description also of the historical drive of cybernetics for
political equilibrium).11 In order to govern a growing economy, a more
abstract definition of information (that is measurable, computable, and
transmissible knowledge) had to be introduced.

This historical process can be framed, once again, not just from the
point of view of commodity circulation but the organisation of labour. Pace
Beniger, Marxist accounts of the post-industrial age have stressed the role
of labour conflicts and social struggles, rather than economic surplus, in
prompting technological development. They have also contested the
political neutrality of the technical notion of information, as the Italian
sociologist Romano Alquati did, for instance, in his inquiry into labour
conditions at the Olivetti computer factory in the early 1960s.12

Olivetti was a pioneering company famous for producing typewriters,
electronic calculators, and mainframe computers from the 1950s. In 1959,
Olivetti launched, for instance, the Elea 9003, the first transistor-based
commercial computer, whose futuristic graphical user interface was
designed by Ettore Sottsass. It was at the Olivetti factory in Ivrea that
Alquati applied for the first time the method of workers’ inquiry (or,
conricerca) to the organisation of labour in cybernetics. Workers’ inquiry
was a sort of participatory action research, albeit more militant, and was



based in the active involvement of workers, also with the extensive use of
individual and group interviews.

Alquati discovered, then, that the cybernetic apparatus of the Olivetti
factory first was an extension of its internal bureaucracy, which monitored
workers at the assembly line and the production process in general by the
means of ‘control information’. It was via the circuits of cybernetics that
bureaucracy was finally able to descend into the bodies of the workers and
watch their activities closely. Although Alquati viewed cybernetics as an
extension of bureaucracy, he reversed the top–down perspective that is
implicit in the idea of control information. In addition to ‘control
information’, he coined the term ‘valorising information’ to describe the
flow of information that is generated by the workers and that, running
upstream, feeds the circuits of the factory, and gives form to the final
products. In this view, information is continuously produced by workers,
absorbed by machinery, and eventually condensed into commodities:

Information is essential to labour-force, it is what the worker – by the means of constant
capital – transmits to the means of production on the basis of evaluations, measurements,
and elaborations in order to operate on the object of work all those modifications of its form
that give it the requested use value.13

With Alquati, numerical information enters, probably for the first time,
the definition of labour. Alquati noticed that the most important part of
labour is made by the series of creative acts, measurements, and decisions
that workers constantly have to perform in front of the machine and in the
assembly line. He called information precisely all the innovative ‘micro-
decisions’ that workers take along the production process, that give form to
the product, but also regulate the machinic apparatus itself:

The productive labour is defined by the quality of information elaborated and transmitted by
the worker to the means of production via the mediation of constant capital, in a way that is
tendentially indirect, but completely socialised.14

According to Alquati, it is specifically the numerical dimension of
cybernetics that can encode workers’ knowledge into digital bits and,
consequently, transform digital bits into numbers for economic planning (as
stated in the opening epigraph to this chapter).15

Alquati saw an extended structure merging bureaucracy, management,
cybernetic machinery, and the division of labour: this was a new system
taking the place of the old factory’s master. Cybernetics unveiled the



machinic nature of bureaucracy and, conversely, the bureaucratic role of
machines – that is, how they both work as feedback apparatuses to control
and capture workers’ know-how. The findings of Alquati’s research can be
summarised as follows: (1) labour is the source of information of the
industrial cybernetic apparatus, indeed the most valuable part of labour is
information; (2) information operates the cybernetic apparatus, gradually
improves its design and adds value to the final products; (3) the numeric
dimension of cybernetics allows us to translate labour into knowledge,
knowledge into information, information into numbers, and so, numbers
into economic planning; (4) the cybernetic apparatus of the factory grows
and improves thanks to the contribution of workers’ socialised intelligence.
For the first time in a distinct way, the cybernetic or automated factory
made visible the transformation of labour into measurable knowledge – that
is, information.

In the early 1960s, Alquati and Italian operaismo started to register the
transformation of Fordism and its more and more ‘abstract’ division of
labour across society. This was clearly prefigured also by political
philosopher Mario Tronti’s image of the social factory. In 1962, Tronti
wrote that ‘at the highest level of capitalist development … the whole of
society becomes an articulation of production, the whole society lives in
function of the factory and the factory extends its exclusive dominion over
the whole society’.16 Information technologies were the material
infrastructure that innervated the regime of industrial capitalism into
society. Although Italian operaismo always had a secondary interest in
science and technology, Alquati gave a key contribution on this matter. He
maintained that any technological innovation, including cybernetics, always
embodies the power relations and class antagonism of a given historical
moment and that for this reason it should be the focus of study:

Capital is always accumulated social labour, the machine is always incorporated social
labour. Obviously. Every ‘new machine’, every innovation expresses the general level and
quality of the power relations between classes at that moment.17

In the end, it is not difficult to see the rise of information technologies
as part of the long evolution of the spatio-temporal abstractions that have
been disciplining labour power in the past century. Information came to
measure the intelligence, knowledge, and skills needed to master the
production process and social relations at large.18 Coincidentally, this



meaning is not far removed from the origin of the term ‘information’ that
was introduced to replace ‘intelligence’ in the early days of information
theory. In 1928, the US engineer Ralph Hartley of the Bell Telephone Labs
proposed to revise the act of ‘intelligence’ or ‘interpretation of a signal’,
which were at that time expressions commonly used in telegraphy, with a
notion devoid of any reference to human faculties and, essentially,
measurable.19 This originary role of human intelligence in communication
technologies can be taken as further evidence of information theory’s
interest in the automation and deskilling of mental labour, but also as a
confirmation of a trajectory that significantly has unfolded, after a long
technological cycle, into the project of artificial intelligence. Nowadays, the
‘intelligence’ that AI algorithms encode and measure extends to an
increasingly wide social field, as this book has attempted to show. This type
of intelligence belongs to both manual and mental labour, to explicit and
tacit knowledge, but above all to the capacity of cooperation and self-
organisation, which is quintessentially a political craft. Going beyond the
horizon of electromechanical engineering, what information comes
ultimately to measure and mediate is the antagonism between workers and
capital – the ‘signals’ that are exchanged between these two noisy camps of
the social order.



PART II 
The Information Age
 



6
The Self-Organisation of the Cybernetic Mind
 

It has been rightly urged that a history of brain models is really a history of the literary and
material technologies which are familiar to, and then used as metaphors by, brain scientists.
Their metaphorical menagerie exhibits mental clocks, logical pianos, barrel organisms,
neural telegraphs and cerebral computer nets. How do specific technologies get into this
zoo? Claims that certain systems can mimic, or even exhibit, intelligence are sustained by
social hierarchies of head and hand. Minds are known because these social conventions are
known.

Simon Schaffer, ‘OK Computer’, 20011

[The] wonder of our time, electrical telegraphy, was long ago modeled in the animal
machine. But the similarity between the two apparatus, the nervous system and the electric
telegraph, has a much deeper foundation. It is more than similarity; it is a kinship between
the two, an agreement not merely of the effects, but also perhaps of the causes.

Emil Du Bois-Reymond, On Animal Motion, 18512

The nervous systems … have been externalized, as part of the reversal of the interior and
exterior worlds. Highways, office blocks, faces and street signs are perceived as if they were
elements in a malfunctioning central nervous system.

J. G. Ballard, The Atrocity Exhibition, 19903

A social history of the nervous system



In 2012, the AlexNet algorithm – a large artificial neural network – won the
ImageNet competition, which is the international benchmark for image
recognition software. Since then, ‘deep’ artificial neural networks, also
known as ‘deep learning’, have led the machine learning revolution and
have been regarded as the most effective technique of AI. Their success
revived also expectations that the ‘solution’ to AI may be found in the
secret logic of the brain’s structures – an idea that dates back to the early
days of digital computers. Neurophysiologist Warren McCulloch and
mathematician Walter Pitts were the first to propose imitating biological
neurons in a device.4 In their 1943 paper ‘A Logical Calculus of the Ideas
Immanent in Nervous Activity’, they presented artificial neural networks as
an imitation of the brain’s physiology, but their idea concealed also an
external ‘social’ genealogy that this chapter intends to rediscover and
excavate.5 Rather than as a biomorphic artefact (i.e., an artefact imitating
life forms), this chapter proposes to illuminate artificial neural networks
from a different and unusual perspective – that is, as a technique for the
self-organisation of information. This hypothesis aligns their invention with
the labour theory of automation which was expounded in the first part of
this book. As much as the design of industrial machines emerged from the
imitation of the organisation of labour, similarly, artificial neural networks
(and machine learning algorithms in general) can be considered as
machines that selforganise their parameters – their internal design –
imitating the organisation of the external world. Rather than an ‘ontological
theatre’ of the living, as historian of science Andrew Pickering has defined
them, cybernetic experiments of self-organisation were essentially a
laboratory of the social.6

In 1943, interpreting laboratory findings in their own way, McCulloch
and Pitts proposed to formalise the human brain as a ‘nervous net’ that
performs logical operations (see fig. 6.1). They envisioned a network of
computing nodes that could imitate human reasoning by reducing human
logic to Boolean logic and its AND, OR, and NOT operators. The analogy
between brain anatomy, logical inference, and computing devices was based
on the observation that biological neurons display an ‘all or none’, or
binary, behaviour. If the sum of the impulses which a neuron receives from
its excitatory and inhibitory synapses exceeds a given limit, the neuron fires
a signal to the synapsis of the following neuron; otherwise, it remains



quiescent.7 The novelty of the idea was not the network form per se but
rather the threshold logic that, in such structure, impersonates the Boolean
operators and the progressive steps of inferential reasoning. By adjusting
the behaviour of their nodes, these machines were said to be ‘learning’ like
brains – that is, to be recording complex information through their self-
organisation.



Figure 6.1. Sketch of artificial neurons. Warren McCulloch and Walter Pitts, ‘A Logical Calculus of
the Ideas Immanent in Nervous Activity’, Bulletin of Mathematical Biophysics 5, no. 4 (1943): 105.



A few years prior, in 1938, the US mathematician and cryptographer
Claude Shannon had demonstrated that electric switching circuits could
execute the Boolean logic operations. He designed the AND, OR, and NOT
logic gates, which soon became incorporated in all transistors and
microchips, thus laying the foundation of the computer age.8 The
emergence of neural networks as a key idea for AI is best understood by
examining Shannon’s logic gates rather than brain physiology. Essentially,
McCulloch and Pitts argued that the brain’s neural circuits perform the
same operations as Shannon’s electrical circuits. While machine learning
textbooks reiterate that McCulloch and Pitts’s idea of artificial neurons was
inspired by the structures and behaviour of neurons in the brain, in fact the
opposite is true: they saw, in the first instance, biological neurons as
technological artefacts. McCulloch and Pitts implicitly envisioned brain
physiology as homologous with the communication technology of the age,
comprised of electromechanical relays, feedback mechanisms, television
scanners, and, notably, telegraph networks. At the 1948 Hixon symposium
on cerebral mechanisms, discussed in more detail in the next chapter,
McCulloch urged his colleagues to ‘conceive neurons as telegraphic
relays’.9

To a historian of science and technology, McCulloch and Pitts’s
artificial neural networks appear not as a completely original idea but as an
elaboration upon an old one. Laura Otis, for one, has shown that the
analogy between the nervous system and electric networks was already
established in the nineteenth century and drawn upon by, among others, the
telegraph inventor Samuel Morse and physicist Hermann von Helmholtz.10

As evidence of this intellectual climate, in an 1851 lecture on the subject of
animal motion cited at the beginning of this chapter, the Berlin physiologist
Emil Du Bois-Reymond expounded on the similarity between the nervous
system and electric telegraph networks with a visionary fervour closer to
science fiction than science.

The imprint of the infrastructures of communication extended beyond
the ‘neural telegraph’ analogy of the nineteenth century: it can be found
also in the twentieth century’s cybernetic projects of self-organisation that
remained crucial in the evolution of artificial neural networks. Indeed, the
idea of self-organising computation capable of adapting to the environment
and ‘learning’ in enduring fashion is a key part of the ‘epistemic ensemble’



of cybernetics that paved the way to machine learning.11 Owing to the
academic hegemony of symbolic AI and the widespread
anthropomorphisation of technology, it is hard to imagine contemporary AI
as a technique of self-organising information or ‘spontaneous order’
emerging out of data. And yet, this is a realistic description of what
machine learning actually does. The link between the self-organising
computation of twentieth-century and twenty-first-century AI has been
concealed by a complex stratum of technological advancements, in which
we lost sight of its origin and development. This chapter undertakes a ‘dig’
into this stratum – into a prehistory of machine learning in which social,
communication, and computational networks were all part of continuous
(and contiguous) movements of self-organisation.

Mechanising self-organisation

In the second half of the twentieth century, self-organisation rose as a
popular topic across a wide range of disciplines, including biology, chaos
theory, neuroscience, thermodynamics, and even neoliberal economics (if
one considers the peculiar interest in the ‘spontaneous order’ of markets).
How should we interpret such a widespread quest for the principles of self-
organisation? The first impression is of a diverse movement searching for
an ontological principle of life; however, such a quest for ‘life’ principles
appears to mirror the ‘principles of self-organisation’ that could be detected
also in the societal changes of the post-war period.

Originally, it was modern political philosophy (with Spinoza and Kant)
which conceived of self-organisation and autonomy as key notions for
theorising the social contract and individual freedom. But, for some reason,
in the mid-twentieth century, the principle of self-organisation migrated
from the social ontology and was transformed into an extrasocial ideal for
vitalist philosophies (with its highest manifestation in James Lovelock’s
Gaia hypothesis, which deems planet Earth a superorganism).12 In 1977,
Ilya Prigogine was awarded the Nobel Prize for his studies on self-
organising structures in thermodynamic systems far from equilibrium.13 In
the same year, Langdon Winner’s book Autonomous Technology signalled a
further mutation in the discourse of self-organisation, whereby technology
rather than nature was newly perceived to be ‘autonomous’ from the human



and dangerously out of control, thus reviving certain Frankensteinian
narratives of the industrial age.14 As these examples show, the concept of
self-organisation has accrued, across different centuries and disciplines, a
thick ideological patina. When and how exactly did the contemporary idea
of self-organisation consolidate?

Curiously, as philosopher of biology Evelyn Fox Keller has noted, it
took cybernetics, which is a branch of electromechanical engineering and
not a natural science, to reboot the scientific debate on self-organisation in
the twentieth century.15 In the 1940s, cybernetics took over the modern
dream of building ‘thinking machines’, albeit by adopting a different
technique from the previous century. In the industrial era, Babbage had
envisioned the automation of mental labour through an ‘engine’ that
implemented hand calculation. Human reasoning was then encoded as a
logical procedure, as a linear sequence of step-by-step operations (which
Alan Turing would associate later with the telegraph tape to envision his
eponymous machine). Cyberneticians explored other ways of building
‘intelligent automata’. Rather than imitating the rules of human reasoning,
they aimed at imitating the rules by which organisms organise themselves
and adapt to the environment. Selforganisation was understood,
importantly, also as self-reproduction and selfrepair. This was a key aspect
that Kant stressed in his definition of ‘organic beings’, which remained a
guiding principle for the cyberneticians.16

Cybernetics claimed to have found in all organisms a basic ‘mechanism’
of behaviour – that is, information as a medium of feedback with the
environment and internal self-regulation. In one of its founding texts,
Arturo Rosenblueth, Norbert Wiener, and Julian Bigelow claimed that ‘the
broad classes of behaviour are the same in machines and in living
organisms’.17 Although different in narrow classes (organisms, obviously,
do not have wheels, etc.), the article posited that both machines and
organisms operate thanks to information feedback that shapes their purpose
and teleology. This principle of cybernetics had, in fact, been anticipated in
early-century biology by Jakob von Uexküll, who viewed the organism as
an information processing system struggling to adapt to its environment.
Uexküll defined the exchange between an animal’s nervous system
(Innenwelt) and the outside world (Außenwelt, or Umwelt) as a ‘function
circle’ (Funktionskreis). In Wiener’s coinage, it should be remembered, the



term ‘cybernetics’ (from the Greek kybernetes, or ‘steersman’) referred to
the capacity of a technical, social, and living system to control itself via an
exchange of information with the environment. It is quite evident that both
Uexküll and cyberneticians derived from the communication systems of
their age – the telegraph, telephone, and radio networks – an analogy for the
interaction of living beings with their environment.

Although cyberneticians initially considered information under the form
of analogue electromagnetic signals, they gradually shifted towards digital,
discrete, and computational ‘bits’.18 For cybernetics, it was not simply
machines in general but also digital computers (i.e., finite state automata)
that could imitate the living being’s principles of selforganisation.19 The
British psychiatrist Ross Ashby was the main theorist of self-organisation in
cybernetics. His 1947 paper, ‘Principles of the Self-Organising Dynamic
System’, was committed to demonstrating that self-organisation was not
only a feature of the living but could be also of ‘strictly determinate’
machines, that is, computers:20

It has been widely denied that a machine can be ‘self-organizing’, i.e., that it can be
determinate and yet able to undergo spontaneous changes of internal organisation. The
question of whether such can occur is not of purely philosophic interest for it is a
fundamental problem in the theory of the nervous system. There is much evidence that this
system is both (a) a strictly determinate physico-chemical system, and (b) that it can undergo
‘self-induced’ internal reorganisations resulting in changes of behaviour. It has sometimes
been held that these two requirements are mutually exclusive. The purpose of this paper is to
show that a machine can be at the same time (a) strictly determinate in its actions, and (b) yet
demonstrate a self-induced change of organisation.21

Ashby put his theory into practice by inventing the ‘homeostat’ (whose
name is a tribute to the homeostasis of living systems, as defined by Walter
Bradford Cannon in 1926). Built from four bulky electromechanical units,
however, its capacity of ‘self-organisation’ was rather the opposite of wilful
adaptation to external stimuli. Grey Walter sarcastically called it machina
sopora (‘sleeping machine’ in Latin), since ‘its goal was to become
quiescent; it changed state only when disturbed from outside’.22 In a later
article from 1960, ‘Principles of the Self-Organizing System’, Ashby fully
ruled self-organisation under a mechanistic paradigm in a way to get rid of
the metaphysics about life emergence: ‘While, in the past, biologists have
tended to think of organisation as something extra, something added to the
elementary variables, the modern theory, based on the logic of



communication, regards organisation as a restriction or constraint.’ He
concluded, however, in a way that is an illuminating example of the typical
desire of automation to replace humanity and achieve invisibility: ‘I think
that in the future we shall hear the word [‘organisation’] less frequently,
though the operations to which it corresponds, in the world of computers
and brain-like mechanisms, will become of increasingly daily
importance.’23

Cyberneticians like Ashby did not pursue self-organisation simply as a
key to the imitation of living structures but specifically of brain structures.
Consequently, they studied the self-organisation of neural networks as the
key to intelligent behaviour. A turning point in this debate came in 1949,
when neuropsychologist Donald Hebb published a crucial book, The
Organisation of Behavior, in which he claimed to have identified a basic
rule of self-organisation in neural networks.24 Hebb recorded a peculiar
phenomenon whereby neurons that were simultaneously stimulated also
strengthened their connection:

When one cell repeatedly assists in firing another, the axon of the first cell develops synaptic
knobs (or enlarges them if they already exist) in contact with the soma of the second cell …
The general idea is an old one, that any two cells or systems of cells that are repeatedly
active at the same time will tend to become ‘associated’ so that activity in one facilitates
activity in the other.25

Since then, this brain behaviour has been known as the Hebbian theory
of ‘cell assemblies’ and has been conveyed in the famous dictum ‘Neurons
that fire together, wire together.’ Hebb’s can be considered as both the first
codified rule of neuroplasticity and the first rule of self-organisation for
machine learning algorithms. Cognitive scientist Frank Rosenblatt
accordingly conceived the first operative artificial neural network – the
perceptron – as a self-organising machine and attempted to implement the
Hebbian rule in its functioning (see below and chapter 9).

Theories of self-organisation and the early digital computer

The research field about self-organisation was at the time larger than it is perceived today: it
would suffice to remember that sooner or later, all the key pioneers of the digital computer, such
as John von Neumann, Konrad Zuse, and Alan Turing, explored self-organisation as a technique
of computation. Von Neumann (the designer of the main architecture of digital computers that
still to this day bears his name) was investigating radical forms of automation while working for
the US military, speculating about a machine – the Universal Constructor – that could reproduce
and repair itself (the army was of course interested in applying this idea to self-reproducing and



self-repairing vehicles and pieces of artillery). The observation of processes of reproduction in
‘living organisms’ inspired their simulation in ‘computing machines’ and established the
questionable analogy between organic cells and computational units.26 The Universal
Constructor was one implementation of the general theory of cellular automata – that is, a
configuration of computational units that change and evolve like organic cells in a two-
dimensional space (see fig. 6.2). In this space, basically, cellular automata are clusters of
elements that change configuration and move according to the neighbouring ‘cells’, composing
geometric figures that evolve, claiming to mimic, in this way, life forms in the natural
environment. At the Hixon symposium in 1948, Neumann urged the other delegates to
understand computation (including Turing machines and artificial neural networks) as a form of
self-organisation, arguing that self-reproducing units could perform all standard operations of
computation just by replicating themselves like biological cells.27 The idea of cellular automata
would go on to register a lasting influence. Known for developing the first programmable
electric computer in Berlin in 1938, Zuse proposed extending the logic of cellular automata to
physics and the general laws of the universe. His 1967 book, Rechnender Raum (Calculating
Space), considered the universe to be composed of discrete spatial units that self-organise as
cellular automata – that is, according to the status and behaviour of neighbouring units.28

According to Zuse, the energy interactions between atoms can be formalised as units of
computation and, following this approach, one could rewrite the laws of physics – for instance
gravitation – in a combinatorial fashion. In this sense, Zuse saw the theory of calculating space
as a paradigm that would supersede quantum psychics in the way the latter had superseded
classical physics.29 From an epistemological point of view, we here encounter once again a
mechanical paradigm that openly aspires to become a paradigm of nature, not of biological laws
in this case but of physical ones. Precisely, a finite-state machine, such as the digital computer,
is elevated to become the ontological model for the structure of the universe itself.



Figure 6.2. Operating arm of the universal constructor. John von Neumann, Theory of Self-
Reproducing Automata (edited by Arthur Burks), Urbana, Il: University of Illinois Press, 1966,

371.

Turing’s essay ‘The Chemical Basis of Morphogenesis’ (published in 1952, two years
before his death) also belongs to the tradition of self-organising computation.30 In this late
paper, Turing envisioned the molecules of organisms as self-computing actors that, through
their interaction, express complex autopoietic structures. He attempted, with this approach, to
model tentacle patterns in hydra, whorl arrangements in plants, gastrulation in embryos,
dappling in animal skin, and phyllotaxis in flowers as forms of selforganising computation. To
generate such patterns (known since as ‘Turing patterns’), he used one of the first mainframe
computers of Manchester University, though he also performed a great number of calculations
by hand (see fig. 6.3). Turing warned that ‘this model will be a simplifi cation and an
idealization, and consequently a falsifi cation’, though he expressed, as any cybernetician
would, the hope that ‘the imaginary biological systems which have been treated, and the
principles which have been discussed, should be of some help in interpreting real biological
forms’.





Figure 6.3. Diagram showing patterns of dappling and calculations. Alan Turing, ca. 1950.
Sheet AMT/K3/8, Turing Archive, King’s College Cambridge, particular.

Military concerns about self-organising networks

Self-organisation theories belonged not only to cybernetic dreams of living
automata, but also to the armamentarium of Cold War rationality.31 As
often, the main sponsor of research in this field was the US military, which
expressed interest in the logic of self-organisation as an alternative, more
efficient, means of computation. At the end of the 1950s, the US Office of
Naval Research (ONR) decided to sponsor a series of symposia on self-
organisation that provide a historical documentation of the wide reception
of artificial neural network research at the time. Strangely, even Margaret
Boden’s monumental history of AI failed to register the existence of these
other symposia, with the result that historical importance is repeatedly
granted only to the 1956 Dartmouth workshop on AI.



In May 1959, Marshall Yovits, head of the newly established
Information System Branch at the ONR, chaired the conference on ‘Self-
Organising Systems’ in collaboration with the Illinois Institute for
Technology. Yovits invited cyberneticians from both the connectionist and
symbolic AI camps.32 Somehow anticipating the forthcoming confrontation
of these two paradigms and the limits of the latter, he argued that

certain types of problems, mostly those involving inherently nonnumerical types of
information, can be solved efficiently only with the use of machines exhibiting a high degree
of learning or self-organizing capability. Examples of problems of this type include
automatic print reading, speech recognition, pattern recognition, automatic language
translation, information retrieval, and control of large and complex systems. Efficient
solutions to problems of these types will probably require some combination of a fixed
stored program computer and a self-organizing machine.

The conference exemplified the interdisciplinary ambitions of
cybernetics, with Yovits highlighting how researchers from the fields of life
sciences such as psychologists, embryologists, and neurophysiologists were
working together to comprehend the characteristics of self-organising
biological systems, while on the other hand, ‘mathematicians, engineers,
and physical scientists were attempting to design artificial systems which
could exhibit self-organizing properties’.33

The proceedings of the conference help cast a light on the debate on
self-organisation beyond the canonical themes of cybernetics. Despite the
variety of positions on display, the main focus of the conference throughout
remained the self-organisation of computing networks. The electrical
engineer Belmont Farley opened the conference with an overview of the
main visual ‘systems which automatically organize themselves to classify
environmental inputs into recognizable percepts or patterns’. Farley’s paper
was the continuation of his studies carried out during World War II, when,
during the bombing of London, he had been responsible for testing a new
type of radar against the lowflying Luftwaffe, showing how the self-
organisation of the visual field was clearly already a concern of military
automation. Other contributors of the conference included zoologist Robert
Auerbach, who attempted to describe ‘the organisation and reorganisation
of embryonic cells’ in mathematical terms – specifically as a ‘transfer of
information (induction)’ in living cells that were dubbed as ‘growing
automata’. In this extended research project to grasp the principle of self-
organisation in nature, the British cybernetician Gordon Pask contributed



the idea of initiating a ‘natural history of networks’ with the intention of
proving a similarity of qualities between social and natural ones:

[If] an observer wishes to use any self-organizing potentialities the network may have, then
he must look at the network as though he were a natural historian … using the term
‘network’ in a general sense, to imply any set of interconnected and measurably active
physical entities. Naturally occurring networks, of interest because they have a self-
organizing character, are, for example, a marsh, a colony of micro-organisms, a research
team, and a man.34

This 1959 symposium is important also to see, in perspective,
McCulloch and Pitts’s original idea of artificial neural networks, which
were not just input–output black-boxed machines but systems seeking to
imitate and embody neuroplasticity. A decade after his and Pitts’s founding
1943 paper, McCulloch took part in the symposium to stress that self-
organisation is key to neural networks and that the same principle should be
used in the design of an ‘infallible network of fallible neurons’.
McCulloch’s intuition (which is still today both the strength and the limit of
machine learning) was that computation does not need to be accurate to be
efficient but can instead be based ‘on redundancy of calculation’. In the
paradigm of artificial neural networks, ‘information is brought to a lot of
so-called neurons, and these crummy neurons, working in parallel
computation, can come out with the right answer even though the
component neurons are misbehaving’.35

A following event sponsored by the ONR was the ‘Symposium on
Principles of Self-Organization’, convened by Heinz von Foerster in 1960
in collaboration with the Biological Computer Laboratory of the University
of Illinois at Urbana-Champaign. The proceedings of this symposium also
testify that McCulloch and Pitts’s, as well as Rosenblatt’s, artificial neural
networks were part of a larger archipelago of similar research projects on
self-organisation.36 Most of the contributions were related to the fields of
neural networks (also referred to as ‘random networks’) and covered issues
such as learning techniques, error correction, inductive inference,
distributed memory, pattern recognition, as well as prototypes of self-
organising hardware units, or neuristors (what today would be called
neuromorphic chips).

Among the participants should be noted the presence of the neoliberal
economist Friedrich Hayek, who in 1952 authored an oft-overlooked
treatise on connectionism, The Sensory Order (see chapter 8). Hayek’s



presence signals the overlapping interests of the military, economists,
cyberneticians, and industrialists regarding the subject of selforganisation.
Cyberneticians, for their part, were eager to prove their theories for the
benefit of the economy and industry. Not by chance was the symposium
opened by Stafford Beer’s ‘electroencephalogram of one of Britain’s largest
steel mills’, which considered the organisation of a factory as equivalent to
a brain.37 Beer had already proposed a ‘sketch of a cybernetic factory’ in
his 1959 book Cybernetics and Management, which exemplified the
political attitude of cybernetics to shape machines, organisms, and workers
all in like manner. In spite of his later collaboration with the socialist
government of Salvador Allende for the project Cybersyn in 1971, Beer
maintained a managerial view of the economy. At this conference, his
primary concern appears to be the self-organisation of industrial
management – the eye of the master – rather than any other aspect of
society.

The end of the Cybersyn project is exemplary of the twisted fate of the
politics of self-organisation. Cybersyn was a communication network for
the management of the Chilean economy. It was contemporaneous with
Arpanet (the progenitor of the internet funded by the US Department of
Defense), yet less advanced. Arpanet featured a decentralised network
based on packet-switching communication, while Cybersyn remained a
centralised web of teletypes linked to a single mainframe computer. Arpanet
was based on the idea that a decentralised communications network could
survive an enemy attack, as the brain’s neural networks reorganise
themselves in case of injury. The US Army co-opted this idea of network
plasticity before anyone else. The Cybersyn project was terminated when a
CIA-backed coup d’état brought Salvador Allende’s life (and Chilean
democracy) to an end.38

From linear to self-organising information

From the vantage point of today’s deep learning, it is the participation of
Frank Rosenblatt in these conferences that appears of key significance. In
1957, at the Cornell Aeronautical Laboratory in Buffalo, New York,
Rosenblatt developed the first statistical artificial neural network
‘perceptron’, which, after several generations of improvements, would



ground the deep learning architecture. Rosenblatt attended these
conferences to defend his prototypes, which were quite fragile experiments.
Emerging from diverse theoretical and technical influences (see chapter 9),
the perceptron was conceived as a self-organising computing network that,
in order to recognise a pattern, would find the optimal value of its
parameters by gradually adjusting them to the input data. As Rosenblatt
remarked in one of these conferences, the perceptron ‘arrives at its
organisation spontaneously, rather than having it built into the system’.

What did the perceptron look like as a device? One of the first
prototypes, the Mark I Perceptron, was an analogue-digital machine
comprising an input device of 20 × 20 photocells (called ‘retina’) connected
through wires to a layer of artificial neurons that resolved into a single
output (a light bulb turning on or off, to signify if a pattern was recognised
or not). The retina of the perceptron recorded simple shapes such as letters
and triangles, passing electrical signals to a series of artificial neurons that
would sum them up and memorise a result according to a cumulative logic
– somehow implementing Hebb’s rule to form cell assemblies, as
Rosenblatt initially intended.

At the 1959 conference ‘Self-Organising Systems’, Rosenblatt’s
contribution was concerned with the generalisation of visual stimuli – that
is, with the recognition of similar patterns in a noisy environment. His
paper aimed at explaining ‘how a brain, or brain-like system, can recognize
similarity among the various possible transformations of a sensory pattern,
or image’. The problem he addressed was the capacity of a statistical neural
network for pattern recognition to generalise beyond the cases of its training
dataset. In simple terms, it was ‘the dilemma of distinguishing the [letter] N
from the Z’ under different visual orientations. The way Rosenblatt
illustrated his project could still be used today to illustrate the working of a
deep learning algorithm:

This system is capable of ‘abstracting’ those transformations which are most common in a
particular environment, and applying them to new stimuli, which may be quite different in
form from any which it has seen. It seems to accomplish all of the results of more rigidly
designed systems, but arrives at its organisation spontaneously, rather than having it built
into the system. It is actually a system which ‘learns to learn’, in the sense that prior to the
preconditioning experience it would be able to generalize from a given stimulus to its
transform only by the slow and laborious method of contiguity generalization, while after
having seen a suitable preconditioning sequence (not including the stimuli to be used for test
purposes), it performs the same task directly and without the requirement of any appreciable
learning period.39



As Rosenblatt explained at the 1961 conference ‘Principles of
SelfOrganisation’, the design of the perceptron was different from previous
artificial neural networks precisely due to its self-organising behaviour,
which was possible via its ‘reinforcement control system’.40 Although it
was a ‘brain model’ according to Rosenblatt, the perceptron was far more
about the self-organisation of information than the mimicry of organic
structures. It marked, therefore, not so much a biomorphic turn in
computation as a topological one. Computer scientists Marvin Minsky and
Seymour Papert renamed connectionism, somewhat pejoratively, as
‘computational geometry’ because it was based on the calculation of spatial
relations rather than being an instance of ‘true AI’.

This topological turn marked, more generally, the passage from a
paradigm of linear information to one of self-organisation under which, I
argue, the large family of machine learning techniques should be
considered. Indeed, it introduced a second spatial dimension into a model of
computation that, until then, had been understood primarily within the
linear dimension of numerical computers. Instead of processing a visual
matrix via a top–down algorithm (as in a traditional program of
instructions, following the scheme of the Turing machine), the perceptron
computed the pixels of its visual matrix in a bottom–up and parallel fashion
according to their spatial disposition. With respect to computational forms,
artificial neural networks such as the perceptron implicitly marked the
bifurcation between these two paradigms: that of linear information
(broadly represented by media such as telegraphs and numerical computers,
as well as symbolic AI) and that of self-organising information (represented
by cybernetic systems, cellular automata, and, ultimately, connectionist AI).
Historians of AI Hubert and Stuart Dreyfus summarised the epistemic
distinction between the symbolic and connectionist schools in a similar
way:

One faction saw computers as a system for manipulating mental symbols; the other, as a
medium for modeling the brain. One sought to use computers to instantiate a formal
representation of the world; the other, to simulate the interactions of neurons. One took
problem solving as its paradigm of intelligence; the other, learning. One utilized logic; the
other, statistics. One school was the heir to the rationalist, reductionist tradition in
philosophy; the other viewed itself as idealized, holistic neuroscience.

This book does not recapitulate the saga of linear information in the
twentieth century – of cybernetic feedback loops, sequential media, and



symbolic AI – but tells the parallel story of self-organising information
which is necessary, however, to emancipate from the legacy of
biomorphism and research paradigms such as Artificial Life.41

Computational thinking and mechanistic analogies of the
mind

There exists a considerable misunderstanding about cybernetics’ scientific
aspirations. In reality, cybernetics was not a science but a school of
engineering in drag – one with sufficient self-confidence to extend its
informational and computational analogies to several aspects of nature and
society. This book tries to clarify that, rather than designing machines like
organisms (biomorphism) as they professed, cyberneticians ultimately
envisioned organisms like machines (technomorphism), which were
mirroring their own surrounding social order (sociomorphism). Like the
philosophies of nature from earlier centuries (the canonical example being
La Mettrie’s L’homme Machine of 1747), cyberneticians projected on the
ontology of nature and the brain the technical composition of their time,
made up of telegraph networks, electromechanical relays, feedback
systems, and television scanners. Cyberneticians did not pursue a scientific
and experimental but rather a speculative (and often naive) method of
analogy, mapping preconstituted rules onto nature rather than making
hypotheses about new ones. McCulloch, Pitts, and von Neumann’s
insistence that brain neurons are ‘switching organs’ functionally equivalent
to electromechanical relays is a good example of cybernetics’ presumptuous
analogies.42

The analogy between organisms and machines appears, at first glance,
to be an issue of epistemic translation between the disciplines of
engineering and biology, but, in fact, it points to a more profound attitude of
cybernetic engineering: What are the ethical implications of seeing an
industrial machine as an organism, a living being? As much as ‘computer
science’, cybernetics was not a science but an artificial language, a manual
of instructions for machine components – a ‘machine semiotics’ which
happened to be forcibly translated into an ontology of nature.43 But, if it is
true that technology can influence scientific paradigms and models of the
universe, it is equally true that technology has its own demons and is



shaped by external forces within its own domain. Communications
networks such as the telegraph, for instance, are not simply technical
apparatuses but social institutions. Cyberneticians projected the technical
composition that was implied in their own profession, in the form of their
labour and knowledge, onto a new paradigm of the world. Specifically, they
projected onto nature forms of self-organisation that were already part of
the division of labour and technical organisation of their surrounding
society. The way cyberneticians claimed to imitate the self-organisation of
living beings to build machines implicitly revealed more about the
organisation of society and labour relations of their age than about nature.

McCulloch once claimed that ‘every robot suggests a mechanistic
hypothesis concerning man’.44 This thesis of cybernetic epistemology
argues that the invention of machines may help discover insights about the
workings of the human, following the reductionist idea that machines and
organisms exist in the same universe and thus must obey the same physical
rules. But the word ‘robot’ is here revealing, because of its industrial and
feudal legacy, and it can suggest another meaning. Interpreted in its full
implications, this thesis may actually imply that every form of labour
automation says something about the cognitive models of a given age. At
the end, it confirms one of the main concerns of historical epistemology:
that the organisation of labour in a given epoch influences the formation of
technologies and instruments, and thereafter of scientific paradigms,
conceptions of nature, and models of the mind too.

What has been illustrated for the industrial age appears to be true also
for the information age: the means of production (not simply telegraphs and
computers, in this case, but also artificial neural networks) imitate – in their
inner design – the relations of production, that is the extended organisation
of labour in society. Information technologies increased their hold over
society by this adaptation, not by the power of a technological a priori (as
techno-determinists maintain), but through a social a priori – that is, by
their inborn capacity to capture social cooperation. The nineteenth-century
labour theory of automation finds confirmation also in the information age.

Eventually, it comes as no surprise that the most successful AI
technique, namely artificial neural networks, is the one that can best mirror,
and therefore best capture, social cooperation. The paradigm of
connectionist AI did not win out over symbolic AI because the former is
‘smarter’ or better able to mimic brain structures, but rather because



inductive and statistical algorithms are more efficient at capturing the logic
of social cooperation than deductive ones. By tracing the evolution from
linear to self-organising information, the history of data analytics, machine
learning, and AI can begin to be seen in perspective as a grand process of
self-organisation within the technosphere to follow the transformation of
the social order.

The disciplines and denominations of information theory, cybernetics,
artificial intelligence, and computer science all consolidated in the 1950s.45

While the US military, as we have seen, played an important role in funding
many of these projects, it would be mistaken to presume they deserve sole
credit for the origination of these disciplines. Indeed, this book looks to
widen this established genealogy. Against technodeterminist and strong
internalist readings of information technologies, I have proposed an equally
strong externalist hypothesis: that the design of information machines
responded – even at the level of the logical forms of their algorithms – to
the forms of social interaction at large.46 In the twentieth century, in other
words, it was not information technologies that primarily reshaped society,
as the mythologised vision of the ‘information society’ implies; rather, it
was social relations that forged communication networks, information
technologies, and cybernetic theories from within. Information algorithms
were designed according to the logic of self-organisation to better capture a
social and economic field undergoing radical transformation.

Autonomy and automation

In the second half of the twentieth century, ‘Autonomy!’ emerged as the
common slogan for both cybernetics and the emerging counterculture.
High-level cyberneticians funded by the US army were discussing
‘principles of self-organisation’ in organisms and machines just as
antiauthoritarian movements were proposing the same for social and
political institutions. As such, these two tendencies debated, for different
purposes, the ability of a system to give itself new rules over and against an
external ruler (which is, in fact, the original meaning of ‘autonomy’). They
were both, each in their own respect, forms of political avant-garde and a
response to the dominion of outdated regimes: European fascism, Stalinist
totalitarianism, and American capitalism. The terms ‘cybernetics’ and ‘beat



generation’ were both coined, coincidentally, in 1948. A few years later,
Norbert Wiener defined both fascism and Western corporatism as ideologies
of ‘the inhuman use of human beings’ against which cybernetics purported
to offer a more ‘human use of human beings’.47 But, where cybernetics in
fact bolstered US military primacy during and after World War II, the
counterculture and the student movement firmly boycotted the Vietnam War
and the arms race. The project of autonomy obviously meant different
things to these different parties. For anti-authoritarian movements, it
represented the freedom of self-determination and a means to constitute
new institutions and alternative forms of life. For the cyberneticians, it was
the technological utopia of full automation and enlightened societal control:
a military and industrial fantasy which also included the project of AI. That
even the military – that most traditionally hierarchical structure – also had a
vested interest in forms of distributed communication and self-organising
networks is a sign of deeper transformations.

In the 1960s, the Free Speech Movement at the University of California,
Berkeley, rightly condemned the first mainframe computers as technologies
of war and social control in the hands of government and corporations.
Media scholar Fred Turner remembers when, on 2 December 1964, in front
of more than five thousand students at the University of California,
Berkeley, activist Mario Savio delivered an incendiary speech in which he
‘uttered three sentences that would come to define not only the Free Speech
Movement at Berkeley, but the countercultural militancy of the 1960s
across America and much of Europe as well’:

There’s a time when the operation of the machine becomes so odious, makes you so sick at
heart, that you can’t take part, you can’t even tacitly take part. And you’ve got to put your
bodies upon the gears and upon the wheels, upon the levers, upon all the apparatus, and
you’ve got to make it stop. And you’ve got to indicate to the people who run it, to the people
who own it, that unless you’re free, the machine will be prevented from working at all.48

For Turner, Savio’s speech evoked memories of the pre-digital era, with
images of workers physically wrestling with machines on factory floors.
However, he also linked the term ‘machine’ to the modern society’s
dependence on information technology, which was beginning to
significantly organise social relations as well.49

Such criticism of information technologies changed polarity in the
following decade: computer science absorbed the aspirations of the earlier
counterculture, while the counterculture itself claimed the emancipatory



potential of information technologies (and eventually mutated into the so-
called cyberculture). The controversial imbrication of social autonomy and
technological automation was already present, albeit underground, in the
debates of the 1960s. Components of the counterculture, especially those
inspired by Eastern spirituality, developed a naive attraction to
cybernetics.50 The Whole Earth Catalog, published in California between
1968 and 1972, came to represent a culmination and synthesis of both
cybernetic and ecological traditions. Richard Brautigan photographed this
convergence in his famous satirical poem ‘All Watched Over by Machines
of Loving Grace’.51 On the other hand, European voices such as that of
Herbert Marcuse from the Frankfurt school and the autonomist Marxists
reclaimed automation in the battle of emancipation from industrial labour.
In Italy, a famous slogan of the autonomia cried: ‘Lavoro zero e reddito
intero, tutta la produzione all’automazione’ (Zero work and full income, all
production to automation).

The terms ‘autonomy’, ‘autonomous’, ‘automation’, and the more
ambivalent ‘autonomisation’ (meaning, depending on the context, ‘being
automated’ or ‘becoming autonomous’) are not equivalent and also differ
from ‘self-organisation’. Etymologically, the classical Greek term
autonomia – from autos (‘self ‘) and nomos (‘law’) – signifies the power to
give oneself new habits, rules, and laws. Modernity recognises this power
as one belonging to legislative institutions, especially to the constituent
assembly that founds the political order of the state.52 Autonomy is
simultaneously a constituent and destituent power: each time a new rule is
invented, an old one can be subverted, nullified, or incorporated by the new
invention. But the opposite is also true: any time a rule is broken, an
anomaly takes form and a new constitution – a new vision of the world – is
implied.

In cybernetics, autonomy was defined as the capacity of a technical
system of multiple agents to find a new organisation and equilibrium in
relation to external inputs – namely, the capacity to adapt to the
environment. In this way, a technical system was said to show emergent
properties that might be perceived as ‘intelligent’ by a human observer.
These questions continue to haunt the dream of artificial intelligence, even
now: Can a finite-state automaton – that is, a computer – show properties of
autonomy? Can a computer programmed to follow strict rules rebel against
its core instructions and invent new ones? If autonomy is the power to



invent a new rule, automation can be defined as the blind following of a
rule, as is the case with computation. In this regard, the Austrian
philosopher Ludwig Wittgenstein remarked that ‘following a rule’ will
always have a different meaning for a human and a machine.53 Considering
the recent debates on AI bias as well as the speculation on the risks of
‘superintelligence’, one wonders whether the game of AI is still being
played within the domain of automation (following a rule) rather than the
domain of autonomy (that of breaking rules).

To conclude, a competing claim: technologies of automation have
always been responses to social autonomy, and cybernetic techniques of
self-organisation such as artificial neural networks, similarly, have been
avatars of the emergent social relations of their day. In hindsight, both
cybernetics and the post-war social movements were directly related to the
autonomisation of knowledge and information in labour processes and
social behaviours, which had triggered the rise of new media and
technologies. These points have over the years become a conventional
interpretation in theories of knowledge society and information economy, to
the point that even neoliberal economic paradigms, such as Hayek’s
spontaneous order of markets, or ‘catallaxy’, can be considered responses to
the increased exchange of information in society at large (see chapter 8).
Materialist historians concede the dialectical relations of the two
movements – between the drive for social autonomy by new generations of
workers, on one hand, and the appearance of new technologies of
automation, on the other. Ultimately, the diverse projects of automation
after World War II were a way to govern developing social forces – that is,
to organise a ‘control revolution’ (as Beniger defined it) against a more
rebellious society.54 It is not by chance that, at least in the Global North,
students and computer programmers were transformed into a new political
subjectivity similar to the industrial workers’ movement, given a global
economy more and more dependent on information, knowledge, and
science as key economic drivers.

In the late 1960s, political philosopher Mario Tronti proposed to reverse
a thesis which was then mainstream also in Marxism: capitalist
development was always considered to shape workers’ organisation and
their politics. To the contrary, Tronti claimed that capitalist development,
including technological innovation, was always triggered by workers’
struggles. Interestingly, for a European intellectual such as Tronti, ‘the



working-class struggle reached its highest level of development between
1933 and 1947, and specifically in the United States’, which are
coincidentally the years that witness the rise of cybernetics and digital
computation.55 Radical and unconventional perspectives like this should be
explored to narrate the combined evolution of society and technology
throughout the twentieth and twenty-first centuries. Across the historical
transformations that this book attempts to analyse, it appears that the project
of AI has never been truly biomorphic (aiming to imitate natural
intelligence, as mentioned earlier) but implicitly sociomorphic – aiming to
encode the forms of social cooperation and collective intelligence in order
to control them.56 The destiny of the automation of intelligence cannot be
seen as separate from the political drive to autonomy: it was ultimately the
self-organisation of the social mind that gave form and momentum to the
project of AI.57



7
The Automation of Pattern Recognition
 

As the industrial revolution concludes in bigger and better bombs, an intellectual revolution
opens with bigger and better robots.

Warren McCulloch, Hixon symposium, 19481

A new, essentially logical, theory is called for in order to understand high-complication
automata and, in particular, the central nervous system. It may be, however, that in this
process logic will have to undergo a pseudomorphosis to neurology to a much greater extent
than the reverse.

John von Neumann, Hixon symposium, 19482

The controversy about Gestalt perception

At the core of the intuition that paved the way for artificial neural networks
lies an enduring controversy: whether or not human perception is an act of
cognition that can be analytically represented and therefore mechanised.
The confrontation about this issue flared up in the 1940s during the Macy
conferences between the cyberneticians (who argued that the perceptual
field as a whole can be computed by machines, such as simple electric
relays) and the Gestalt school (who maintained that a machine would never



be able to emulate the complex synthetic faculty of the human mind).3 It
constituted a new chapter in the ongoing Gestalt controversy from Europe;
yet this time, exiled from Nazi Germany to the United States, its
protagonists included mathematicians and engineers in addition to the
previous cast of philosophers, psychologists, and neurologists.4 It was in the
aftermath of this debate, in fact, that the expression ‘Gestalt perception’
gradually morphed, in military reports and academic publications, into the
more familiar ‘pattern recognition’ and gave momentum to the experiments
with artificial neural networks.5

Cyberneticians such as Warren McCulloch and Walter Pitts proposed a
dramatic simplification of the act of perception, at which any art historian
would baulk. However, their research provoked a breakthrough in the
‘automation of perception’ that would unfold, half a century later, in the
well-known exploits of deep learning.6 Before cyberneticians reduced the
faculty of perception to a simple binary act of classification (whether or not
an image belongs to a given class), Gestalt scholars such as Max
Wertheimer, Kurt Koffka, and Wolfgang Köhler had advanced a more
complex theory of perception. Gestalt theory famously referred to the fact
that one perceives the whole before its parts – a melody, for instance,
remains discernible even when it is played in a different scale and with
different sounds. It pointed to diverse phenomena of image closure, such as
the subconscious perception of a configuration in its totality in spite of
limited information about its elements (e.g., the perception of a triangle in
the abstract relation of three separated elements). Eventually, it was
formalised in the principles of Prägnanz (proximity, similarity, continuity,
connectedness, etc.) and encapsulated in the famous motto ‘The whole is
other than the sum of its parts’.

Textbooks on machine learning repeat the standard account that
McCulloch and Pitts’s invention of artificial neural networks was inspired
by the neurophysiology of the brain, while overlooking the broader
intellectual context that includes their confrontation with the Gestalt school.
Though artificial neural networks may be regarded as a brilliant solution to
a challenge of automation, it was the Gestalt school that established the
perception of a visual form as a key issue to address. The specific problem
that Gestalt theory urged cyberneticians to resolve through a computational
architecture was the recognition of a pattern, such as an image. Is the



recognition of an image equivalent to logical reasoning? McCulloch and
Pitts thought so, therefore arguing that any visual pattern (even a complex,
fuzzy, and incomplete one) can be fully defined by computing the relation
of its elements within the visual field. In their view, the recognition (or
classification) of a pattern could be resolved by an algorithm to compute a
large input into a simple binary output (0 or 1), representing in this way a
simple binary question: ‘Does the image belong to a given class or not?’

After short skirmishes during the Macy conferences, the Gestalt
controversy convened at a dedicated event: the Hixon symposium on
‘Cerebral Mechanisms and Behavior’, which took place at the California
Institute of Technology, Pasadena, in 1948, and was attended by
McCulloch, von Neumann, and Köhler, as well as famed psychologists
Heinrich Klüver and Karl Lashley, among others.7 The Hixon symposium
was a watershed event in the history of computation: even John McCarthy
admitted that his felicitous term ‘artificial intelligence’, which was coined
for the Dartmouth conference in 1956, had been inspired by his attendance
at this earlier symposium as a graduate student in mathematics.8

At the time, neither of the opposing factions won the controversy. As
physicist and science historian Steve Heims noted, ‘In a sense, both were
romantics, Köhler in his holism and McCulloch in his mechanism.’9 As a
matter of fact, it was von Neumann who proposed a synthesis of Gestalt
theories and computational logic that eventually progressed the field and
inspired Rosenblatt’s neural network perceptron, which implemented
statistical calculus in place of McCulloch and Pitts’s rigid logic. This
chapter aims to re-examine the influence of Gestalt theory upon the history
of AI, and to highlight, in particular, the transformation of artificial neural
networks from mediums of logical reasoning into instruments for pattern
recognition. The Gestalt controversy and the Hixon symposium are
proposed, then, as an alternative history of AI that does not relitigate the
(failed) enterprise of symbolic AI and its ambitions to mechanise deductive
logic, but shifts the focus to the lineage of connectionism and the
automation of inductive logic.

The Gestalt controversy is a cognitive fossil of unresolved problems
that is today buried at the core of deep learning, and its study can help us to
understand the logical form and limits that twenty-first-century AI has
inherited.10 The Gestalt controversy also points to an optical unconscious



still operative in contemporary machine learning, as the technique of pattern
recognition has been extended from visual to nonvisual information datasets
over the past few decades. In a peculiar twist of fate, it is the mechanisation
of perception as pattern recognition that has come to be traded as the
mechanisation of cognition, or artificial intelligence. Nevertheless, despite
its origins in the automation of vision, the use of anthropomorphic
metaphors of perception to describe the operations of artificial neural
networks, as well as today’s deep learning, is misleading. As is often
repeated, machine vision ‘sees’ nothing: what an algorithm ‘sees’ – that is,
calculates – are topological relations among numerical values of a two-
dimensional matrix. Ultimately, the breakthrough brought about by artificial
neural networks was not so much biomorphic as, in this case, topological.
In other words, it was not so much about imitating the structure of neural
networks in the eye’s retina as, essentially, about developing techniques of
self-organising information to read the visual matrix.

The invention of artificial neural networks

As outlined in the previous chapter, the invention of artificial neural
networks was canonised in a milestone paper by McCulloch and Pitts: ‘A
Logical Calculus of the Ideas Immanent in Nervous Activity’ (1943). This
was followed by another key text that was a direct response to the Gestalt
controversy: ‘How We Know Universals’ (1947).11 While the former
introduced the idea of a network of artificial neurons to automate logical
reasoning, the latter advanced its application to ‘the perception of auditory
and visual forms’ (see fig. 7.1). The passage from the former to the latter
marks a logical breakaway. Whereas the 1943 paper proposed neural
networks as deductive machines for propositional calculus, the 1947 paper
pointed towards inductive machines for automating pattern recognition. It is
worth bearing in mind that McCulloch and Pitts’s 1943 paper did not
mention computers, because they were not then an established
technology.12





Figure 7.1. Diagram of the superior colliculus of the midbrain. Warren McCulloch and Walter Pitts,
‘How We Know Universals: The Perception of Auditory and Visual Forms’, Bulletin of

Mathematical Biophysics 9, no. 3 (1947): 141.

In order to put the history of AI in perspective, it is important at this
point to clarify the difference between deductive and inductive logic. Since
Leibniz’s idea of a calculus ratiocinator, the modern project of pursuing
machine intelligence has been founded on the postulate that human logic
can be expressed by propositional logic (‘if x, then y is true/false’), which is
equivalent to Boolean logic (AND, OR, and NOT operators). A proposition
expressed according to this formal logic can be easily encoded into a
mechanism made of rotating gears, electric relays, or electronic gates, such
as valves or transistors. On a closer look, this type of logic is pursuing a
linear form of rationality that replicates the linearity of written language and
symbol manipulation according to the rules of deductive inference – an
approach well exemplified by the Turing machine and the way it executes
instructions from a one-dimensional tape. Symbolic AI, expert systems, and
inference engines are all examples of this tendency of deductive machines
that continued until the 1980s. On the other hand, artificial neural networks
– along with all machine learning algorithms – are examples of inductive
machines. Whereas deductive logic is the application of a rule, reasoning
from the general to the particular, inductive logic involves reasoning from
the particular to the general, thereby forming rules of classification. The
canonical example is the movement from the discovery that ‘each human
being dies’ to the definition of the rule that ‘all human beings are mortal’.
This opposition between deductive and inductive logic is key to
understanding not only the Gestalt controversy but also the rise of machine
learning.

According to Heims’s account, in preparation for the highly anticipated
visit of the Gestalt scholar Köhler to the Macy conferences in New York,
Klüver issued a challenge to the gathered scientists: to formulate a theory
on ‘how an automaton could perceive Gestalten’. Klüver’s challenge was
taken up by McCulloch and Pitts, who, with the financial support of the



Macy and Rockefeller foundations, were seeking to move beyond their
1943 proof that a finite network of simplified modelneurons could compute
anything that can be unambiguously stated in words. Their aim, this time,
was to develop neural mechanisms for specific brain functions such as
perception, ideally with enough precision to be tested experimentally.13

As a result of the discussion, in 1947, McCulloch and Pitts published
their paper ‘How We Know Universals: The Perception of Auditory and
Visual Forms’.14 Compared to the previous one from 1943, here the
concern is not the computation of propositions according to a linear logic
but, rather, the recognition of a pattern in a bidimensional matrix.
McCulloch and Pitts conceived a ‘device’ by which ‘numerous nets,
embodied in special nervous structures, serve to classify information
according to useful common characters’.15 What would this ‘device’ look
like? Given the technical development of the late 1940s, it had to be made,
for instance, of photoreceptors that could turn a visual input into a digital
image – that is, a grid of pixels measured by numerical values. Without
going into detail about colour, presumably such a grid would have to have
been encoded in binary digits: value 1 for black pixels, value 0 for white
pixels. McCulloch and Pitts’s device for pattern recognition was a
computing network that would resolve a grid of binary numbers into the
binary output 1 (true) if a pattern was recognised or 0 (false) if a pattern
was not recognised.

In mathematical terms, a device for pattern recognition is an algorithm
that computes the same output for any input that a human classifies as
belonging to the same type of patterns. With their mathematical device,
McCulloch and Pitts wanted to challenge the Gestalt school’s belief in the
uniqueness of human cognition and demonstrate that perception can be
described algorithmically and automated. Their original exposition of an
artificial neural network for pattern recognition reads:

Numerous nets, embodied in special nervous structures, serve to classify information
according to useful common characters. In vision they detect the equivalence of apparitions
related by similarity and congruence, like those of a single physical thing seen from various
places. In audition, they recognize timbre and chord, regardless of pitch. The equivalent
apparitions in all cases share a common figure and define a group of transformations that
take the equivalents into one another but preserve the figure invariant. So, for example, the
group of translations removes a square appearing at one place to other places; but the figure
of a square it leaves invariant. These figures are the geometric objects of Cartan and Weyl,
the Gestalten of Wertheimer and Köhler. We seek general methods for designing nervous



nets which recognize figures in such a way as to produce the same output for every input
belonging to the figure.16

According to McCulloch and Pitts, it would be possible to compute the
principles of Gestalt recognition even when they seem to involve a
profound power of abstraction, as in the phenomenon of closure (when, for
example, to use again the above-cited example, a triangle is recognised
from incomplete lines and non-connected points). Although it may appear
reductionist, McCulloch and Pitts in fact proposed a complex dimorphism
of dimension between perception and cognition. Gestalt theorists
maintained that perception and cognition exist along a continuous
isomorphism: the spatial relations of an object are isomorphic with its
percept, and thus with its mental image. In contrast, McCulloch and Pitts
suggested the possibility of transforming the twodimensional relations of an
image into a one-dimensional representation – basically a code, or logical
proposition – without undermining the content or quality of information.

This is a crucial passage in the history of connectionism and AI:
McCulloch and Pitts argued that the isomorphism between an image and its
logical representation is not necessary. The form of a triangle, for instance,
does not need to be memorised as an isomorphic triangle in some parts of
the brain but can be distributed across different dimensions (a topological
transformation also termed ‘internal representation’ in deep learning).17 The
two scientists advanced this hypothesis against the Gestalt school to argue
that a visual manifold can be computed by a linear information machine
such as that of Turing:

This point is especially to be taken against the Gestalt psychologists, who will not conceive a
figure being known save by depicting it topographically on neuronal mosaics, and against
the neurologists of the school of Hughlings Jackson, who must have it fed to some
specialized neuron whose business is, say, the reading of squares. That language in which
information is communicated to the homunculus who sits always beyond any incomplete
analysis of sensory mechanisms and before any analysis of motor ones neither needs to be
nor is apt to be built on the plan of those languages men use toward one another.18

McCulloch and Pitts’s paradigm of perception and cognition was as
much as atomistic as multidimensional: it was based on the idea that in
order to ‘perceive’ and ‘understand’, a biological or artificial neural
network can dismember a manifold of two dimensions and project it onto a
different configuration of dimensions than the original ones. In a visionary
way, they challenged the famous dictum by Gestalt theory: ‘The whole is



other than the sum of its parts.’19 They sought to replace Gestalt theory’s
holistic complexity with another kind of multidimensionality which was
purely mathematical.

What the frog’s eye tells the frog’s brain

At the Hixon symposium, Köhler was the lone delegate representing the
Gestalt school. He participated not to defend a mystic power of the mind
but to present physical measurements of brain activity during visual
perception, precisely ‘records of electric currents which have been taken
from the heads of human subjects under conditions of pattern vision’.20

Köhler’s study demonstrated that Gestalt theorists were not opposed to the
quest for neural correlates of perception; they simply pursued a traditional
method of scientific testing rather than the thinking by analogy of
cyberneticians. As Heims has also noted:

Gestalt psychologists did not capitulate to mysticism, political reaction and vitalism, all of
which were connected with the hunger for wholeness. They insisted on empirical studies of
phenomena and sought fundamental laws describing structural characteristics of experience,
even as they supported the popular opposition to atomistic and mechanistic analyses of the
world.21

Specifically, Köhler relied on the model of force fields, which was
derived from physics and inspired, among others, by his close friend Max
Planck, to explain the phenomenon of visual perception happening between
eye and brain.

At the Hixon symposium, the physical hypothesis of force fields
underlying Gestalt perception clashed with the computational analogy of
brains as finite-state automata. Köhler attacked McCulloch’s reductionist
approach to the brain, arguing that nerve impulses, when seen and measured
by a histologist or neurophysiologist, do not look like logical propositions
but simply like … impulses!22 Against cybernetics’ view of the brain as
‘machine arrangements’, Köhler proposed the theory of force fields to
explain a structural continuity of form (isomorphism) between the stimulus
of perception, its neural correlates, and the higher faculties of cognition
(such as the faculty of insight):23

Continuity is a structural trait of the visual field. It is also a structural fact that in this field
circumscribed particular percepts are segregated as patches, figures and things. In both



characteristics, we have found, the macroscopic aspect of cortical processes resembles visual
experience. To this extent, therefore, vision and its cortical correlate are isomorphic.24

In contrast with the gung-ho enthusiasm of cyberneticians for neural
correlates resembling logical operators, Köhler was cautious about his own
findings.25 Moreover, contrary to what the term may suggest, Gestalt
‘isomorphism’ was not a monotonic notion but one that included principles
of plasticity such as self-organisation and selfrepair in the broader sense.26

The Gestalt school considered the idea of the mind as a finite-state
automaton unfit for describing these higher capacities of the mind for
synthesis and abstraction through self-organisation.

On the other side of the camp, the most vocal and virulent antiGestaltist
was Norbert Wiener, who called holism a ‘pseudo-scientific bogy’.
Accordingly, Wiener argued that ‘if a phenomena can only be grasped as a
whole and is completely unresponsive to analysis, there is no suitable
material for any scientific description of it; for the whole is never at our
disposal’.27 Wiener shared McCulloch and Pitts’s computational view of the
mind ideologically, with no hesitation:

It is a noteworthy fact that the human mind and animal nervous systems, which are known to
be capable of the work of a computation system, contain elements which are ideally suited to
act as relays. These elements are the so-called neurons or nerve cells.28

The idea of artificial neurons and the project of automating Gestalt
perception had already been discussed when, in 1948, Wiener published
Cybernetics, which provided the first summa of digital computation and
information theories. In 1951, a few years after the Hixon symposium,
Köhler wrote a harsh review of Wiener’s book and its chapter about
‘Gestalt and Universals’, in which he argued that while it is true that
machines are better than humans at calculation, such calculation does not
constitute thinking or, indeed, capacity of insight (Einsicht) into a problem:

In the relation of human beings to the computing machines, thinking in the proper sense of
the term appears to remain the task of the former. Excellent engineers and mathematicians
build into such instrument mechanically forced ways of operation which may serve as
factually reliable substitutes for certain quantitative activities of the human mind such as
addition and multiplication. It is not astonishing that, so far as speed is concerned, the
substituted operations of the machines are far superior to anything that human brains can
achieve. At the same time, these operations appear to be generically different from those of a
human being who is occupied with a mathematical problem … The machines do not know,
because among their functions there is none that can be compared with insight into the
meaning of a problem.29



In the mid-1950s, neurophysiologist Jerome Lettvin and biologist
Humberto Maturana invited McCulloch and Pitts to contribute to their
studies on the neurons of the frog’s eye. Their conclusion would be
published in 1959 in the famous paper ‘What the Frog’s Eye Tells the
Frog’s Brain’, which for many represents the final nail in the coffin of the
Gestalt controversy.30

Their research moved from the simple observation that the optical nerve
of higher animals is composed of fewer fibres than the retina. This suggests
that the stimulus must undergo compression before it reaches the brain. The
question that arises is what exactly happens to the stimulus between the
retina, the optical nerve, and the visual cortex? The scientists took the frog
as their model organism. They measured the stimuli in the optical nerve
using an electrode, while presenting high-contrast shapes to the animal’s
eye. In this way, they recorded four types of neural behaviours, or
‘operations’: ‘1) sustained contrast detection; 2) net convexity detection; 3)
moving edge detection; 4) net dimming detection’.31 By way of illustration,
let us consider the second operation – net convexity detection – which is
perhaps the most intuitive to understand: it is about the perception of a
small object roaming across the visual field, like a flying insect, which is
crucial for food retrieval and the survival of the frog. As such, it was
colloquially called the ‘bug detector’:

Against the Gestalt theory’s primacy of brain functions, the authors
argued that the eye already performs basic tasks of cognition, such as
pattern recognition, and sends signals to the brain that are already
wellformed concepts and not just percepts. They contended that the eye is
already employing the language of ‘complex abstractions’ rather than being
simply a medium of sensations. They concluded that ‘the eye speaks to the
brain in a language already highly organized and interpreted, instead of
transmitting some more or less accurate copy of the distribution of light on
the receptors’.32 What the eye sends to the brain would not be of a form
analogous to the percept (which would maintain Gestalt proportions) but
rather a semantic proposition – a piece of information interpreting the
pattern present in the percept. The collective article also integrated findings
from McCulloch and Pitts’s 1947 paper, including the observation that an
image can be logically defined and ‘perceived’ by the calculation of the
relations between its elements according to a spatial logic.



By transforming the image from a space of simple discrete points to a congruent space where
each equivalent point is described by the intersection of particular qualities in its
neighborhood, we can then give the image in terms of distributions of combinations of those
qualities. In short, every point is seen in definite contexts. The character of these contexts,
genetically built in, is the physiological synthetic a priori.33

A digital image is comprised not simply of discrete points but of spatial
relations that can be described as ‘distributions of combinations’. Notably,
the authors seem to suggest here that it is not the neural network per se
which comprises the ‘physiological synthetic a priori’ of thought but rather
the spatial logic that the neural network computes.

The biomorphism of the early artificial neural networks (in this case, the
imitation of biological neural networks) must eventually be questioned. The
human organ that McCulloch and Pitts most often investigated and
envisioned as a network of logical operators was not the brain but the eye;
and, of the eye, their artificial neural networks implicitly inherited a specific
hierarchy of behaviour. In McCulloch and Pitts’s 1947 essay, the
cooperation among the nodes of the artificial neural network was supposed
to resolve the combinatorial geometry of the field of vision, not the
propositional logic of a syllogism, as in their 1943 publication. In the
Gestalt controversy, then, one does not find a model of cognition to be
mechanised but rather several models of perception, since the elements of
the perceptual field, rather than mental states, were represented in
computational terms. The development of artificial neural networks
continued by mostly studying the neurons of the eye rather than the brain:
from Lettvin’s frogs to David Hubel and Torsten Wiesel’s cats (which
inspired convolutional neural networks such as AlexNet), the history of
connectionist AI is indebted to experiments on animals and their organs of
vision.34

From a mathematical point of view, the Gestalt controversy was, on one
hand, about the transformation of an image into a logical construct and, on
the other, about the fact that a logical construct of human reasoning may
share the probabilistic features of image perception.35 Reading between the
lines, the Gestalt controversy was already pointing towards a logical form
that would only emerge properly in twenty-firstcentury machine learning:
the idea of a spatial and statistical dimension of information beyond the
linear modality of the Turing machine. Logic gates and perceptual fields –
the basic concepts of cybernetics and the Gestalt school respectively – were



two polarised ideals that the evolution of AI eventually overcame and
synthesised into more and more abstract constructs: today the inner logic of
machine learning is described, for instance, through entities such as
multidimensional vectors, latent spaces, and statistical distributions. The
visual matrix (and, with it, the picture plane of modern iconology) has since
then evolved into these advanced logical forms, into vast ramifications of
statistical inference yet to be fully understood.

The language of the brain is not the language of
mathematics

As the epistemologist David Bates has noted, the Gestalt school’s
scepticism about computational reductionism was nevertheless received by
a central protagonist of US cybernetics: the polymath John von Neumann.
A key figure of the Manhattan Project and fervent anti-Communist,36 von
Neumann occupied a role of mediator in the controversy. In so doing, he
effected a synthesis of Gestalt theory and logical neural networks and, in
this way, opened the terrain for Rosenblatt’s idea of statistical neural
networks. He maintained a strong interest in the mathematical analysis of
biological neural networks without claiming either that the brain is a
machine or that a machine can perfectly simulate a brain. Instead, he argued
that, considering the number of their units (neurons in brains relative to
switches in machines), the scale of human cognition cannot be compared
with mechanical computation: ‘The number of nerve cells in the human
central nervous system has been estimated to be 10 billion … and nobody
has seen a switching organ of 10 billion units; therefore one would be
comparing two unknown objects.’37 As we will see, ultimately von
Neumann did not reduce the brain to the computer – the biological to the
logical – but instead envisioned in-between models and implementations to
translate one domain into the other.

Von Neumann agreed with McCulloch and Pitts that ‘anything that you
can describe in words can also be done with the neuron method’ but
disagreed ‘that any circuit you are designing in this manner really occurs in
nature’.38 While he sympathised with McCulloch and Pitts’s effort to
axiomatise biological neurons into formal ones, he also agreed with the
Gestalt school that the systemic nature of form perception is such that it



cannot be easily described in propositional terms and deductive logic,
unless by exploding the size of descriptions into lengthy and verbose code
scripts. As von Neumann explains, arithmetic logic carries manifest limits
of scale in its representation of the world:

Suppose you want to describe the fact that when you look at a triangle you realize that it’s a
triangle, and you realize this whether it’s small or large. It’s relatively simple to describe
geometrically what is meant: a triangle is a group of three lines arranged in a certain manner.
Well, that’s fine, except that you also recognize as a triangle something whose sides are
curved, and a situation where only the vertices are indicated, and something where the
interior is shaded and the exterior is not. You can recognize as a triangle many different
things, all of which have some indication of a triangle in them, but the more details you try
to put in a description of it the longer the description becomes. [With] respect to the whole
visual machinery of interpreting a picture, of putting something into a picture, we get into
domains which you certainly cannot describe in those [logical] terms.39

Contra McCulloch and Pitts, von Neumann contended that the brain can
recognise the complexity of any image precisely because of its probabilistic
logic. Arithmetic logic would be then a simplification and approximation of
the brain’s actual workings and could only partially grasp its features. As a
result, von Neumann defined arithmetic logic as a metalanguage
(‘secondary language’ or ‘short code’) that is efficient but not effective at
fully describing the underlying probabilistic language of the brain (‘primary
language’ or ‘complete code’). He also observed, similarly to Köhler, that
the nervous system speaks this primary language using the statistical
properties of stimuli (‘complete code’), rather than exact markers (‘short
code’).

Given such probabilistic dynamics, von Neumann concluded,
counterintuitively, that in the nervous system a ‘deterioration’ of arithmetic
precision can actually result in ‘an improvement in logics’.40 He
highlighted, among others, that biological neural networks operate with an
error tolerance that would set any deterministic computing machine out of
joint. A single mistake in a computer programme and the whole machine
halts. However, such mistakes never trouble organisms. It is, then, the same
probabilistic nature of organisms that make them fault redundant and able
to perceive fuzzy and complex figures effortlessly:

The fact that natural organisms have such a radically different attitude about errors and
behave so differently when an error occurs is probably connected with some other traits of
natural organisms, which are entirely absent from our automata. The ability of a natural
organism to survive in spite of a high incidence of error (which our artificial automata are
incapable of) probably requires a very high flexibility and ability of the automaton to watch



itself and reorganize itself. And this probably requires a very considerable autonomy of
parts. There is a high autonomy of parts in the human nervous system. This autonomy of
parts of a system has an effect which is observable in the human nervous system but not in
artificial automata.41

There is today consensus that biological neural networks operate in
spite of errors, faults, and damages – and precisely also thanks to them.42

Cyberneticians encountered this idea of neuroplasticity in the cognitive
sciences of the time, in particular in the work of the neurologists Karl
Lashley (who also presented at the Hixon symposium) and Kurt Goldstein
(who had emigrated to the US as part of the Gestalt school diaspora).
Lashley tested the effect of artificially induced brain injuries on the memory
of laboratory rats, while Goldstein studied the capacity of World War I
veterans to reorganise their memories after real brain traumas.43 However, it
was Goldstein rather than Lashley who provided a more systematic model
of neuroplasticity. His theory of the brain’s capacity to reorganise itself after
a trauma was also closely related to the debate on memory localisation. A
thesis key to a pioneer of holistic neurology, Constantin von Monakow, was
that memory is distributed rather than localised, and this is why it can be
recovered after a brain injury (see chapter 8). Von Neumann echoed such
theories:

The main difficulty with the memory organ is that it appears to be nowhere in particular. It is
never very simple to locate anything in the brain, because the brain has an enormous ability
to re-organize. Even when you have localized a function in a particular part of it, if you
remove that part, you may discover that the brain has reorganized itself, reassigned its
responsibilities, and the function is again being performed.44

It was this idea of a distributed memory in human brains that suggested
the delocalisation of memory in machines. Neural networks, with their
distributed architecture, were the perfect candidates to accomplish this. As
Rosenblatt acknowledged in Neurodynamics, von Neumann’s comment on
distributed memory was a main inspiration for the perceptron (see chapter
9).45

Seen in perspective, von Neumann pursued a different method of
inquiry compared to the other cyberneticians. Against the Platonism and
intuitionism then popular also in engineering, von Neumann maintained a
constructivist perspective on language, logic, and mathematics. He believed
that these concepts were not inherent or innate, but rather products of
historical development.



It is only proper to realize that language is largely a historical accident. The basic human
languages are traditionally transmitted to us in various forms, but their very multiplicity
proves that there is nothing absolute and necessary about them. Just as languages like Greek
or Sanskrit are historical facts and not absolute logical necessities, it is only reasonable to
assume that logics and mathematics are similarly historical, accidental forms of expression.
They may have essential variants, i.e. they may exist in other forms than the ones to which
we are accustomed. Indeed, the nature of the central nervous system and of the message
systems that it transmits indicate positively that this is so.46

This historical relativisation of mathematics and logic is crucial for
understanding von Neumann’s approach to the computational theory of the
mind and the project of building thinking automata. Von Neumann held a
more sophisticated position than functionalism, or the thesis of the multiple
realisability of the mind, which maintains that the same operative model of
intelligence can be implemented across different substrates made of
neurons, relays, transistors, and so forth. Instead, von Neumann promoted a
method of mutual implementation between artificial and natural worlds,
that is, a method of modelling.47 Of course, von Neumann was positive
about using computers as model machines for studying the brain.

Even so, at the end of his life, when he was invited by Yale University
to deliver the Silliman Lectures in 1956, he sought to clarify this point
without ambiguity. His lecture series ‘The Computer and the Brain’
concludes with the declarative title ‘The Language of the Brain Not the
Language of Mathematics’. In this lecture series, he recognised a key role
to the ‘secondary language’ of mathematics in the knowledge of the
‘primary language’ of the brain. But, rather than reiterating the
computationalism of McCulloch, Pitts, and Wiener, von Neumann – himself
no romantic – made at the end a remarkable intervention: he reversed the
relation between logic and nature, computer and brain, to the point of
suggesting that the study of neurophysiology could one day reshape logic
altogether. In the introduction to the lectures’s anthology, shortly before his
death in 1957, presciently, von Neumann wrote: ‘I suspect that a deeper
mathematical study of the nervous system [in fact] may alter the way in
which we look on mathematics and logics proper.’48

Von Neumann’s final thoughts were a recognition of the dialectical
relation of any system of thought with nature and the external world. They
came to terms with the bounds of any system of formalisation and
acknowledged the material constraints, including historical ones, of
technological and scientific abstractions. These insights surpassed the



standard reductionism of the cybernetic mentality. Models of minds and
machines do not need to match each other; they often operate through
modelling the world rather than reducing it to fixed representations. An
epistemology which would acknowledge the flexibility and limitations of
modelling is recommended, and yet not a sufficient condition for a
progressive philosophy of the mind. As we will see in the next chapter, in
fact, the neoliberal economist Friedrich Hayek attempted to turn model
thinking into a core principle of economic individualism.



8
Hayek and the Epistemology of Connectionism
 

Mind thus becomes to me a continuous stream of impulses, the significance of each and
every contribution of which is determined by the place in the pattern of channels through
which they flow within the pattern of all available channels – with newly arriving afferent
impulses, set up by external or internal stimuli, merely diverting this flow into whatever
direction the whole flow is disposed to move … I liked to compare this flow of
‘representative’ neural impulses, largely reflecting the structure of the world in which the
central nervous system lives, to a stock of capital being nourished by inputs and giving a
continuous stream of outputs – only fortunately, the stock of this capital cannot be used up.

Friedrich Hayek, ‘The Sensory Order after 25 Years’ [1977]1

Homo sapiens is about pattern recognition … Both a gift and a trap.
William Gibson, Pattern Recognition, 20032

Introducing the classifier

It was not a cybernetician but a neoliberal economist who provided the
most systematic treatise on connectionism, or, as it would be later known,
the paradigm of artificial neural networks.3 In his 1952 book The Sensory
Order, Friedrich Hayek propounded a connectionist theory of the mind
already far more advanced than the theory of symbolic AI, whose birth is,



redundantly, celebrated anno 1956 with the exalted Dartmouth workshop.4
In The Sensory Order, Hayek provided a synthesis of Gestalt principles and
Warren McCulloch and Walter Pitts’s idea of neural networks to describe
‘the nervous system as an instrument of classification’.5 He went so far to
speculate about the possibility of a device fulfilling a similar function,
describing (in the jargon of today’s machine learning) a classifier algorithm.
In 1958, Frank Rosenblatt defined the perceptron (the first operative
artificial neural network for pattern recognition) as ‘connectionist’ and
acknowledged that the work of ‘Hebb and Hayek’ was ‘the most
suggestive’ for his own.6 While Donald Hebb was a neuropsychologist
famous for the theory of brain cell assemblies – a doctrine of
neuroplasticity that is encapsulated in the dictum ‘Neurons that fire
together, wire together’ seen in chapter 6 – Hayek was an economist who
studied the selforganisation of the mind in a similar way but in order to
support a political belief: namely, the spontaneous order of markets. The
perception that Hayek invented connectionism, however, is a simplification
that overlooks his debt to the neurology and cybernetics of the time. One
might better say that Hayek stole pattern recognition and transformed it into
a neoliberal principle of market regulation.

Hayek began work on his theory of the mind in 1920, when he was an
assistant in the laboratory of neuropathologist Constantin Monakow in
Zurich, and continued developing it across a long list of publications
throughout his career.7 He provided an impressive synthesis of ideas, from
neurophysiology, holistic neurology, Gestalt psychology, system theory,
empirio-criticism, and cybernetics – although he mobilised this
armamentarium of cognitive science with the purpose of making neoliberal
principles look natural and universal.8 A striking example of this is that
Hayek described the decentralisation of knowledge across the market in the
same way in which Constantin von Monakow and Kurt Goldstein’s theories
of neuroplasticity described the decentralisation of cognitive functions
across the brain.

As seen in chapter 6, between the 1940s and the 1960s, the theory of
self-organisation in markets contributed to the theories of selforganisation
in computing networks, and vice versa. It must be said, however, that
Hayek’s theory of the market’s spontaneous order was part of an ideological
coup d’état. Indeed, nothing looked less spontaneous than a market order



within the sphere of influence of a nuclear superpower.9 As noted earlier,
historians of science and technology usually stress the influence of US
military funding on the development of cybernetics and artificial
intelligence. However, another front of the Cold War has to be
acknowledged to complete the picture: the formation of neoliberal doctrines
in response to the socialist calculation debate (described below) and
Keynesian policies.10 Just as much as the decentralised topology of the
Arpanet military network (the precursor of the internet) was designed as a
reaction to Soviet military threat, Hayek’s connectionism was conceived,
among other stimuli, as a response to socialist centralised planning and
Keynesianism.11 Reading Hayek through this lens helps to illuminate the
influence of economic rationality on the early paradigms of artificial
intelligence and trace the circulation of those ideas through models of
minds, markets, and machines in the post–World War II years, but also to
register the influence of political and social forces in the making of such
models. It was a competitive market network that gave form to Hayek’s
neural networks, which were elevated to techniques for price calculation
because, as Hayek confessed in the epigraph to this chapter, they were
implicitly envisioned as ‘a stock of capital being nourished by inputs and
giving a continuous stream of outputs’.12 In this sense, Hayek’s theory of
the mind was but a variant of mercantile connectionism.

This chapter aims to put Hayek’s epistemological project ‘on its feet’,
so to speak, showing how his connectionist theory of the mind was used to
shore up a specific (ideological) view of the market. This will require a
schematic reconstruction of Hayek’s argument from his economic paradigm
backwards to his theory of cognition. Hayek tried to forward the following
lines of argumentation: (1) that the economic problem is about the limited
knowledge of free individuals which establish the optimal price of
commodities on the basis of incomplete information; (2) that knowledge is
acquired through the act of classification, or pattern recognition – that is,
the universal faculty to make categories out of perceptions that appear
different and incomplete; (3) that classification happens via the self-
organisation of connections in the brain, or neural networks – in other
words, that knowledge is not made of propositions and representations but
is performed by a topology of connections to take decisions (to classify
something within a class or not); and (4) that the mind is a dynamic mental



order of connections that is related but not identical to the external order –
under which logic, knowledge is not a rigid representation but an
approximate model of the world constantly rearranging itself. Eventually, in
Hayek’s political intention, connectionism and neural networks provide a
relativist paradigm for justifying the ‘methodological individualism’ of
neoliberalism.13

The decentralised and tacit rationality of the market

In 1945, Hayek intervened in the famous socialist calculation debate with
the essay ‘The Use of Knowledge in Society’. Ludwig von Mises of the
Austrian school of economics had initiated the debate, arguing that in the
absence of commodity prices as a unit of account, rational economic
calculations would be impossible under the centralised bureaucracy of
socialist economies. On the other side of the debate, it happened that
Marxist economists such as Oskar Lange were questioning the importance
of units of calculation such as money and labour time in the formation of
prices. Hayek agreed with his mentor Mises but framed the anti-socialist
argument differently: the economic order was, he claimed, an issue of
spontaneous knowledge rather than of mathematical exactitude. Hayek saw
the pricing of commodities as a spontaneous order emerging from tacit
knowledge – that is, as ‘a problem of the utilization of knowledge which is
not given to anyone in its totality’. For this reason, neither centralised
institutions nor technical apparatuses of calculation could grasp and
embody such knowledge efficiently. Hayek’s famous passage on the
decentralised rationality of the market reads:

The peculiar character of the problem of a rational economic order is determined precisely
by the fact that the knowledge of the circumstances of which we must make use never exists
in concentrated or integrated form but solely as the dispersed bits of incomplete and
frequently contradictory knowledge which all the separate individuals possess. The
economic problem of society is thus not merely a problem of how to allocate ‘given’
resources – if ‘given’ is taken to mean given to a single mind which deliberately solves the
problem set by these ‘data’. It is rather a problem of how to secure the best use of resources
known to any of the members of society, for ends whose relative importance only these
individuals know. Or, to put it briefly, it is a problem of the utilization of knowledge which is
not given to anyone in its totality.14



Philip Mirowski and Edward Nik-Khah believe themselves to have
found here ‘the First Commandment of neoliberalism. Markets don’t exist
to allocate given physical resources, so much as they serve to integrate and
disseminate something called knowledge.’15 Curiously, the idea that
knowledge is distributed across a system and not possessed by any single
component in its totality is not an original one from Hayek but is derived
from the non-localisation theory of brain functions of Monakow, with
whom, as mentioned above, Hayek worked as assistant in 1920. Monakow
advanced the hypothesis that cognitive functions (including memory) are
not delimited in one specific part but are distributed across the whole brain.
He coined the term ‘diaschisis’ (from the Greek for ‘shocked throughout’)
to describe how an injured brain can recover cognitive functions through
neural reorganisation.16 Monakow’s holistic model of the brain (what
nowadays would be called a model of ‘neuroplasticity’) was further
systematised by another author Hayek read and often quoted, the Gestalt
neurologist Kurt Goldstein.17 Hayek’s idea that the market is a place of
distributed knowledge therefore did not proceed from the study of
economic phenomena but was first extrapolated from holistic neurology and
early theories of neuroplasticity. In The Sensory Order, Hayek also referred
to neurophysiologist Karl Lashley’s idea of the brain’s equipotentiality,
which bears similarities to Monakow and Goldstein’s:

Certain mental processes which are normally based on impulses proceeding in certain fibres
may, after these fibres have been destroyed, be relearned by the use of some other fibres.
Certain associations may be effectively brought about through several alternative bundles of
connexions, so that, if any one of these paths is severed, the remaining ones will still be able
to bring about the result. Such effects have been observed and described under the names of
‘vicarious functioning’ and ‘equipotentiality’.18

As von Neumann, among others, has suggested, holistic neurology
influenced not only Hayek’s idea of distributed knowledge across the
market but also the architecture of distributed memory in computing
machines.19 In his 1961 book Neurodynamics, Rosenblatt also
acknowledged Lashley’s and von Neumann’s remarks on the distributed
architecture of the brain as one of the main inspirations for the perceptron
neural network.20

Alongside the decentralisation of knowledge in his economic paradigm,
Hayek performed another important operation of decentring: the



mobilisation of tacit knowledge.21 Hayek took great inspiration from
Gilbert Ryle’s 1945 paper, ‘Knowing How and Knowing That’, which
famously defended the status of know-how and skills against the alleged
‘higher’ forms of conscious and procedural knowledge.22 Hayek writes:

The ‘know how’ consists in the capacity to act according to rules which we may be able to
discover but which we need not be able to state in order to obey them … Rules which we
cannot state thus do not govern only our actions. They also govern our perceptions, and
particularly our perceptions of other people’s actions. The child who speaks grammatically
without knowing the rules of grammar not only understands all the shades of meaning
expressed by others through following the rules of grammar, but may also be able to correct
a grammatical mistake in the speech of others.23

What we recognise as purposive conduct is conduct following a rule
with which we are acquainted but which we need not explicitly know.
Similarly, that an approach of another person is friendly or hostile, that he is
playing a game or willing to sell us some commodity or intends to make
love, we recognise without knowing what we recognise it from.24

The holistic neurology of the time shared a similar position. For
Goldstein, for instance, the unconscious is the locus not of primordial
instincts that drive the conscious mind, as was the case with its Freudian
predecessor, but, rather, of abstract behaviours as important as the
conscious ones. By this account, the unconscious is a space of rules in the
making, of embryonic abstractions to be perfected.25 Thanks to these
studies, Hayek was able to declare that unconscious behaviours also possess
the power to make habits, norms, and abstractions. Along similar lines,
Mirowski and Nik-Khah comment that ‘for Hayek, it was rationality that
was largely unconscious … Knowledge here was no longer like entropy or
pixie dust; now it resembled a great submerged iceberg, nine-tenths of it
invisible.’26 Although captivating, the analogy of submerged rationality is
not an accurate picture of Hayek’s position. Reversing the usual topology of
the mind, Hayek suggested that tacit knowledge is not subconscious but
rather ‘supra-conscious’ or ‘metaconscious’.27 He stressed the existence of
meta-conscious rules that are as abstract as conscious ones:

While we are clearly often not aware of mental processes because they have not yet risen to
the level of consciousness but proceed on what are (both physiologically and
psychologically) lower levels, there is no reason why the conscious level should be the
highest level, and many grounds which make it probable that, to be conscious, processes
must be guided by a supra-conscious order which cannot be the object of its own



representations. Mental events may thus be unconscious and uncommunicable because they
proceed on too high a level as well as because they proceed on too low a level.28

What escapes Hayek’s assessment is that this decentralised and
unconscious rationality is to be found not only in markets but also in other
forms of human organisation and cooperation. Marx, for example,
recognised the division of labour in workshops and manufactories as a form
of spontaneous and unconscious rationality.29 Capital, according to Marx,
does not just exploit workers individually but does so through the social
cooperation that is augmented by the division of labour and machinery. As
we saw in chapter 4, Marx assigned the power of the division of labour to
the figure of the collective worker (Gesamtarbeiter), which is distinct from
the sum of individual tasks; similarly, Hayek saw the market as a
spontaneous form of selforganisation that is more than the mere sum of its
individual exchanges. The difference between the two is that Marx,
following Charles Babbage’s lead, was aware that the spontaneous
rationality of labour could be captured by the factory system and
technological innovation, while Hayek assumed that the capture of the
rationality of the market by a technical or institutional apparatus would be
impossible and, if ever possible, illiberal. Hayek could not forecast that at
the turn of the coming century, digital networks and large data centres,
employing the very artificial neural networks discussed by cyberneticians,
would be able to trace and compute social behaviours and collective
rationality in real time, inaugurating a highly effective regime of knowledge
extractivism on a global scale.

The faculty of classification; or, What is a pattern?

Throughout his career, Hayek defined classification as the main faculty of
the mind in its interactions with the world and in the generation of new
ideas (including those ‘ideas’ most crucial to economists: commodity
prices). In their 1947 paper, McCulloch and Pitts already theorised artificial
neural networks for ‘the perception of auditory and visual forms’, but
Hayek’s 1952 book The Sensory Order was the first systematic treatment of
connectionism and classification as a general faculty of the mind. Even
today, Hayek’s account of classification remains a valid introduction to the
definition of classifier algorithms in machine learning:



The phenomena with which we are here concerned are commonly discussed in psychology
under the heading of ‘discrimination’. This term is somewhat misleading because it suggests
a sort of ‘recognition’ of physical differences between the events which it discriminates,
while we are concerned with a process which creates the distinctions in question. The same
is true of most of the other available words which might be used, such as ‘to sort out’, ‘to
differentiate’, or ‘to classify’. The only appropriate term which is tolerably free from
misleading connotations would appear to be ‘grouping’. For the purposes of the following
discussion it will nevertheless be convenient to adopt the term ‘to classify’ with its
corresponding nouns ‘classes’ and ‘classification’ in a special technical meaning … By
‘classification’ we shall mean a process in which on each occasion on which a certain
recurring event happens it produces the same specific effect … All the different events
which whenever they occur produce the same effect will be said to be events of the same
class, and the fact that every one of them produces the same effect will be the sole criterion
which makes them members of the same class.30

The above passage is followed in The Sensory Order by Hayek’s
speculations about the possibility of machines embodying this principle of
classification. Hayek provided examples of analogue machines that, in their
simplicity, can help illustrate the basic statistical logic of early artificial
neural networks such as Rosenblatt’s perceptron:

We may conceive of a machine constructed for the purpose of performing simple processes
of classification of this kind. We can, for instance, imagine a machine which ‘sorts out’ balls
of various size which are placed into it by distributing them between different receptacles …
Another kind of machine performing this simplest kind of classification might be conceived
as in a similar fashion sorting out individual signals arriving through any one of a large
number of wires or tubes. We shall regard here any signal arriving through one particular
wire or tube as the same recurring event which will always lead to the same action of the
machine. The machine would respond similarly also to signals arriving through some
different tubes or wires, and any such group to which the machine responded in the same
manner would be regarded as events of the same class. Such a machine would act like a
simplified telephone exchange in which each of a number of incoming wires was
permanently connected with, say a particular bell, so that any signal coming in on any one of
these wires would ring that bell. All the wires connected with any one bell would then carry
signals belonging to the same class. An actual instance of a machine of this kind is provided
by certain statistical machines for sorting cards on which punched holes represent statistical
data.31

What this mechanical analogy helps illuminate is that, for Hayek, the
mind’s construction of classes (concepts, categories, patterns, prices, etc.) is
not the mere grouping of perceptions and mental events that appear similar.
Hayek claimed that the human mind defines classes not only by recognising
similarities but often by establishing such similarities (also among arbitrary
elements). This means that, for Hayek (as for the cyberneticians), the
establishment of a class is a pragmatic gesture rather than an abstract one,
much like the acquisition of an individual habit or social convention by



repetition. For Hayek, different perceptual events are recognised as part of
the same class whenever they trigger, in all their instances, the same effect
in the nervous system or as motor response: that is, the same perceptual
pattern must produce the same conscious idea and/or the same motor
pattern.

Within the notion of class, Hayek included perceptual and aesthetical
categories such as Gestalt and pattern, but also ethical and political ones
such as habit and norm. Gestalt theory had registered a profound influence
on Hayek, to the extent that his theoretical framework can be considered the
translation of Gestalt principles into the economic and social field.32 In
German literature and science, the notion of Gestalt (or perceptual
configuration) had played a central role since the eighteenth century, from
Goethe to Mach, before being canonised in the Gestalt school’s psychology
of perception. As seen in the previous chapter, at the 1948 Hixon
symposium, cyberneticians questioned Gestalt perception as a unique
faculty of the human and advocated its mechanisation under techniques
such as McCulloch and Pitts’s artificial neural networks for pattern
recognition. In fact, the more technical English term ‘pattern’ gradually
replaced the German word Gestalt, which was imported to the United States
by the diaspora of scholars fleeing Nazism.33

However, it was thanks to Gestalt theory and not cybernetics that Hayek
was able to extend the definitions of class and pattern to the economic field.
Already in Sensory Order he expanded the understanding of pattern beyond
the visual sphere and in so doing covered, respectively, ‘patterns within the
brain’, ‘topological patterns’, ‘patterns of movements’, ‘temporal patterns’,
‘patterns of behavior’, ‘patterns of motor responses’, ‘patterns of attitude or
dispositions’, ‘patterns of nervous impulses’, and so on. He developed a
large repertoire of the notion of pattern that included form, template,
Schablone, mould, schemata, abstraction, norm, habit, disposition,
arrangement, rule, and inference. However, it was first with ‘The Theory of
Complex Phenomena’ (1961) that Hayek began to use the prescient
moniker ‘pattern recognition’ to define classification.34 Probably Hayek’s
most visionary passages are those in which mathematical equations describe
multidimensional patterns (which is in fact what the equations of artificial
neural networks compute with differential calculus).35 For example, he
writes:



Many of the patterns of nature we can discover only after they have been constructed by our
mind. The systematic construction of such new patterns is the business of mathematics. The
role which geometry plays in this respect with regard to some visual patterns is merely the
most familiar instance of this. The great strength of mathematics is that it enables us to
describe abstract patterns which cannot be perceived by our senses, and to state the common
properties of hierarchies or classes of patterns of a highly abstract character. Every algebraic
equation or set of such equations defines in this sense a class of patterns, with the individual
manifestation of this kind of pattern being particularized as we substitute definite values for
the variables.36

Like other modern philosophers, Hayek made no distinction between
the ability to invent a class and to change behaviour: the constitution of
habits and norms follow the same logic of the constitution of ideas. Hayek
extended, in this way, the faculty of constructing classes and patterns to
praxis and social behaviours:

People do behave in the same manner towards things, not because these things are identical
in a physical sense, but because they have learnt to classify them as belonging to the same
group, because they can put them to the same use or expect from them what to the people
concerned is an equivalent effect.37

Nevertheless, what is crucial for any epistemology is not the definition
of knowledge per se but the capacity for its invention. How does a mind
invent new ideas? Hayek not only had to offer a definition of classification
or pattern recognition but also had to clarify how new classes and patterns
are made. For Hayek, human beings continuously make and unmake classes
and patterns in their everyday activities. Specifically, the disruption of
traditional and familiar classes through which reality is perceived and the
reconstitution of new ones within unexpected constellations should be
considered the modus operandi of science (against scientism and the
‘engineering type of mind’):38

The idea that science breaks up and replaces the system of classification which our sense
qualities represent is less familiar, yet this is precisely what Science does … This process of
re-classifying ‘objects’ which our senses have already classified in one way, of substituting
for the ‘secondary’ qualities in which our senses arrange external stimuli a new classification
based on consciously established relations between classes of events is, perhaps, the most
characteristic aspect of the procedure of the natural sciences. The whole history of modern
Science proves to be a process of progressive emancipation from the innate classification of
the external stimuli till in the end they completely disappear.39

Given the synthesis of psychology, mathematics, cybernetics, sociology,
and the philosophy of science in his theory of connectionism, Hayek can
truly be defined as the economist of pattern recognition, or better, the



economist that turned pattern recognition into a market principle of
neoliberalism.

Neural networks as a model of the mind

How is a set of different stimuli associated with the same class – that is,
recognised as a recurrent pattern? What is the cerebral process that makes
classification possible? Hayek’s connectionism provided an empirical
explanation for the relation between perception and cognition. Influenced
by McCulloch and Pitts’s idea of neural networks, Hayek simplified
cognition as a simple act of decision (rather than intuition, or Einsicht, as in
the Gestalt school).40 In McCulloch and Pitts’s model, a structure of
progressive layers of nodes (made of multiple neurons or switches) filters a
large input into a single binary output (a single neuron or switch) that
decides if the group of input stimuli belongs to a given class or not. The
solution is quite elegant: one node computes a large input into a simple
binary output to signify ‘yes’ or ‘no’. As in the modality of supervised
machine learning, the end node is assigned to a given class by a convention
(for instance, to the label ‘apple’). It is said that the model is not
isomorphic, meaning that none of its parts resembles the knowledge it
interprets: there is no localised area of the network that memorises, for
instance, the general form of the apple in its recognisable proportions.41

The correct classification of stimuli depends on the overall behaviour of the
computing structure.

Hayek’s connectionism, however, did not advocate for a computational
theory of the mind. It would be no mistake to call his theory Gestalt
connectionism to distinguish it from McCulloch and Pitts’s logical
connectionism and Rosenblatt’s statistical connectionism. Hayek argued
that the mind (which in his view was a mental order, a selforganised
network of entities such as neurons) can only provide a model rather than a
representation of the world (a sensory order, made of relations among
qualia). Hayek wrote that ‘what we call mind is thus a particular order of a
set of events taking place in some organism and in some manner related to
but not identical with, the physical order of events in the environment’.42 In
1945, cyberneticians Arturo Rosenblueth and Norbert Wiener framed
model-making in similar terms:



Partial models, imperfect as they may be, are the only means developed by science for
understanding the universe. This statement does not imply an attitude of defeatism but the
recognition that the main tool of science is the human mind and that the human mind is
finite.43

The construction of a model is the implementation of a given
environment within the internal parameters and constraints of another
environment, yet in the process of translation some elements are dispersed,
approximated, and distorted. Hayek also acknowledged that a mental order
is a partial, often false, interpretation of reality:

We have seen that the classification of the stimuli performed by our senses will be based on
a system of acquired connexions which reproduce, in a partial and imperfect manner,
relations existing between the corresponding physical stimuli. The ‘model’ of the physical
world which is thus formed will give only a very distorted reproduction of the relationships
existing in that world; and the classification of these events by our senses will often prove to
be false, that is, give rise to expectations which will not be borne out by events.44

It is telling that, after Babbage, yet another political economist is to be
found at a watershed in the history of computing: Babbage proposed
computation as the automation of mental labour in the industrial process,
while Hayek maintained that computation of market transactions would be
impossible and, in any case, detrimental to the market autonomy itself. The
theoretical difference and historical gap between Babbage and Hayek
mirrors the difference between symbolic and connectionist AI, between an
idea of cognition based on representation and one based on modelling.
Babbage’s project to automate mental labour as hand calculation unfolded
into the Turing machine and the deductive algorithms of symbolic AI:
numerical manipulation became symbol manipulation, leaving no space for
interpretation of meaning and capacity of adaptation. Whereas Babbage’s
computation was born through following a drive to exactitude to fix errors
in logarithmic tables, a flexible and adaptive epistemology is found in
connectionism (including in Hayek’s variant). After Hayek and von
Neumann, Rosenblatt stressed that his neural network perceptron was a
simplification and exaggeration of specific traits of the human minds
without claiming to be the ultimate paradigm of intelligence.45

The market as a model of neural networks



In addition to the theory of pattern recognition, Hayek is acknowledged for
having employed, ante litteram, a technical definition of information. His
1945 essay ‘The Use of Knowledge in Society’ anticipated Shannon’s 1948
mathematical theory of communication, providing an operative definition of
information as units of communication – more precisely, in this case, as
‘price signals’. Hayek is recognised also for describing the market as a
computer – or, in the language of the time, as a sort of distributed telegraph
network, ‘a kind of machinery for registering change, or a system of
telecommunications’ (it must be noted that at the time the computer was not
yet a common technology):

We must look at the price system as such a mechanism for communicating information if we
want to understand its real function, a function which, of course, it fulfils less perfectly as
prices grow more rigid … The most significant fact about this system is the economy of
knowledge with which it operates, or how little the individual participants need to know in
order to be able to take the right action. In abbreviated form, by a kind of symbol, only the
most essential information is passed on and passed on only to those concerned. It is more
than a metaphor to describe the price system as a kind of machinery for registering change,
or a system of telecommunications which enables individual producers to watch merely the
movement of a few pointers, as an engineer might watch the hands of a few dials, in order to
adjust their activities to changes of which they may never know more than is reflected in the
price movement.46

Contrary to the hubris of cyberneticians for full automation, Hayek
asserted that the magnitude of the market’s complexity would exceed the
hardware limits of any apparatus of calculation and of manageable
equations. Two decades later, from the other side of the socialist calculation
debate, the economist Oskar Lange countered that innovation had overcome
these limitations, advocating for the use of powerful new computers in
solving the mathematical problems of economics: ‘So what’s the trouble?’,
Lange replied to Hayek. ‘Let us put the simultaneous equations on an
electronic computer and we shall obtain the solution in less than a
second.’47 Lange understood the computer as a new instrument of
knowledge that inaugurates a different perspective on the economy, as ‘the
computer fulfils a function which the market never was able to perform’.48

Implicitly, Lange suggested the use of the computer as technical mediator
between the troubles of market spontaneity and those of centralised
planning. This particular insight of Lange has been quoted by left-
accelerationist rhetoric to generically foster a public use of algorithmic
planning in the age of big data against the private use of said planning by



corporations; Fredric Jameson, for example, advocated for the
nationalisation of the computing power of global logistics giants such as
Walmart and Amazon.49 But to what specific sort of computing technique
was Lange referring? Often neglected, the following part of his argument
does not mention deterministic computing but something that resembles the
training process of artificial neural networks:

The market mechanism and trial and error procedure proposed in my essay really played the
role of a computing device for solving a system of simultaneous equations. The solution was
found by a process of iteration which was assumed to be convergent. The iterations were
based on a feedback principle operating so as to gradually eliminate deviations from
equilibrium. It was envisaged that the process would operate like a servo-mechanism, which,
through feedback action, automatically eliminates disturbances … The same process can be
implemented by an electronic analogue machine which simulates the iteration process
implied in the tátonnements [incremental approximations] of the market mechanism. Such
an electronic analogue (servo-mechanism) simulates the working of the market. This
statement, however, may be reversed: the market simulates the electronic analogue
computer. In other words, the market may be considered as a computer sui generis which
serves to solve a system of simultaneous equations. It operates like an analogue machine: a
servo-mechanism based on the feedback principle. The market may be considered as one of
the oldest historical devices for solving simultaneous equations. The interesting thing is that
the solving mechanism operates not via a physical but via a social process. It turns out that
the social processes as well may serve as a basis for the operation of feedback devices
leading to the solution of equations by iteration.50

Along the tradition of Hayek’s connectionism, Lange described the
market as a social machine solving simultaneous equations by incremental
approximations (tátonnements), in a way similar to a learning algorithm that
changes its parameters with trial-and-error adjustments. Lange’s example of
approximation techniques to solve market equations surely does not echo
centralised socialist economies but instead, nowadays, the training
algorithms of artificial neural networks (such as backpropagation and
gradient descent, among others). As the two passages by Hayek and Lange
have shown, in the twentieth century’s economic debates, models of market
and computation sometimes exchanged positions, but the real issue at stake
remained the agency and autonomy of the underlying social processes.

Towards a political epistemology of neural networks

Hayek’s confession that he envisioned the connectionist mind as a stock
capital in a continuous exchange with the market seems to confirm, in the



age of AI, the seductive theory of ‘real abstraction’ by Marxist scholar
Alfred Sohn-Rethel. In his 1970 book Intellectual and Manual Labour,
Sohn-Rethel sketched a ‘critique of epistemology’ that posited the
commodity form as the origin of abstract thinking itself. Sohn-Rethel
argued that the exchange of goods in antiquity mediated by money would
have been the first instance of abstract thought such as philosophy, since
money, like philosophy, instituted a principle of abstract equivalence
between material things. A commodity that is exchanged with another is,
for Sohn-Rethel, a paradigmatic example of ‘real abstraction’ – that is, an
abstraction expressed by the means of a thing. This happens even when the
act of exchange is unconscious (here both Marx and Hayek would agree). In
this way, the abstraction of market exchange preceded and influenced the
evolution of philosophical and scientific ‘conscious’ abstractions.

Sohn-Rethel was convinced that the general ideas of philosophy and
analytical mathematics historically emerged when the first coined money
(made of elektron, a naturally occurring alloy of gold and silver that was
abundant in Asia Minor) started to circulate as a stable general equivalent in
the ancient Greek colonies.51 According to his narrative, once money was
liberated from the control of the despot, its numeric form galvanised
philosophy as the first form of secular abstraction (religion and mythology
being regimes of abstraction already in operation). A few generations after
elektron coins entered circulation and boosted commerce, the Greek
colonies witnessed the first generation of the canonical Western
philosophers, including Thales, Anaximander, and Anaximenes. Sohn-
Rethel argued that the notions of identity, substance, divisibility, and
infinity typical of the pre-Socratic philosophers mirrored the same
properties that had to be measured in the new metallic medium of
commerce. For him, however, secular thinking was born as a conscious and
critical reaction to the ills that money brought to Greek society.

Reducing the genesis of symbolic forms only to the monetary general
equivalent can open all too easily onto fatalistic readings of the pernicious
influence of capitalism on the mental order, creating a state of affairs
wherein it would be difficult, if not impossible, to think outside the logic of
capital. In his account of the emergence of conceptual tools, Sohn-Rethel
stressed only the influence of the sphere of circulation (mercantile
exchange) and thus minimised the sphere of production (the social division
of labour). In so doing, he overlooked the activity of reflection of labour



through tools and language, which, according to other materialist
epistemologies (including those of Jean Piaget and Peter Damerow) gave
rise to mathematical abstractions long before the emergence of mercantile
exchange.52 In other words, the real abstraction of the social division of
labour predates the real abstraction of monetary exchange and wage labour:
abstract thought existed in societies where money was not circulating but
the division of labour and, in particular, slavery were enforced. Hayek
would have been comfortable seeing the discipline of philosophy as a
mirror of the market abstractions with no reference to the potential
autonomy of labour and tool-making. If Hayek’s sophisticated
connectionism is, then, but a sublimated version of the ‘market rationality’,
what would an alternative epistemology of neural networks, that would not
echo the neoliberal mind, look like?

In the Grundrisse, Marx provided a critique of Hegel’s epistemology
that can also be extended to Hayek’s mercantile epistemology. In the
introduction to that work (written in 1857, a decade before Capital), Marx
described the dialectics of abstract and concrete ideas as ‘the method of
political economy’, in this way synthesising German idealism and British
political economy. Questioning the given categories of everyday language,
as Hegel himself proposed in the Phenomenology of Spirit, Marx stressed
that a familiar expression such as ‘labour’ is the result of the long
combination of different abstractions rather than a simple and originary
notion from which reflection should start.53 According to Marx, the
‘scientifically correct method’ starts from decomposing an idea
(Vorstellung) into simpler concepts (Begriff) and then moving again from
these simple concepts to recompose the whole ‘as a rich totality of many
determinations and relations’.54 Hayek’s description of the scientific
method as the making and unmaking of the abstractions (classes, patterns,
etc.) through which reality is perceived appears not dissimilar from that of
Marx, though their political extrapolations obviously diverge. The creation
of new ideas is, for Hayek, a subjective affair, an exercise of individual
freedom, while, for Marx, it is influenced by the social relations of
production and is often organic to the logic of capital. Marx took the
example of labour, which appears to be an old, familiar, and simple
category, which modern capitalism has transformed into an abstraction.
According to Marx, in fact, industrial capitalism emerged via the imposition
of ‘abstract labour’ – that is, labour indifferent to the specificity of



‘concrete labour’, labour that is transformed into commodity, into a general
equivalent of labour that any worker can perform.55 Unlike preindustrial
concrete labour, abstract labour is measured in abstract time units, and
workers are paid proportionally to such units.56 Historically, the working
class in its modern sense was constituted, as a new political subject, by the
imposition of the general equivalent of abstract labour during the industrial
age.57

Unlike Hayek, Marx questioned the political genealogy of the
categories of economic thought. For him, the categories of thought –
specifically that of labour – are not neutral and are, rather, intrinsic to the
capitalist logic. They thus contribute to a certain normalisation, control, and
exploitation of society. However, unless one is indulging in political
fatalism, one must recognise that the faculty of abstraction has never been
an exclusive attribute of power only. To contest abstract labour in a
capitalist sense, one should consider that the faculty of abstraction belongs
to the human mind in its dialectical relation with the world, with tools and
techniques, not just to a sovereign apparatus, capitalist or otherwise. As
political philosophers Michael Hardt and Antonio Negri justifiably remark,
‘Abstraction is essential to both the functioning of capital and the critique
of it.’58 Any abstraction, any classification, is the result of a social division
of labour, of contradictions and conflicts that are generative of knowledge.
Similarly, Hayek’s neural networks and artificial neural networks in general
remain an extension of this very social division of abstract labour.



9
The Invention of the Perceptron
 

Our success in developing the perceptron means that for the first time a non-biological
object will achieve an organization of its external environment in a meaningful way … My
colleague [Marshall Yovits] disapproves of all the loose talk one hears nowadays about
mechanical brains. He prefers to call our machine a self-organizing system, but, between
you and me, that’s precisely what any brain is.

Frank Rosenblatt, interview by the New Yorker, 6 December 19581

The role of experimentation becomes increasingly important as the systems to be considered
grow in complexity, while the amount that can be accomplished by purely logical reasoning
falls increasingly short of a complete understanding of the system’s performance. This does
not mean that an abandonment of theoretical analysis is advocated but, rather, in the spirit
of Galileo, that theory must be matched by experiment at all times, and that from the
interaction of theory and experiment will emerge the knowledge of the proper steps which
must follow.

Frank Rosenblatt, ‘Analytic Techniques for the Study of Neural
Nets’, 19642

Faults are defaults, yet instruments perform. A principle of science studies is that dissensus
is instructive, not pathological, and that agreement is not inevitable, but to be explained.
Instruments’ adequate function needs comparable analysis. Then ‘the big question’ is how
it’s judged that instruments are working and, indeed, what they are.

Simon Schaffer, ‘Easily Cracked’, 20113



‘An organization of the external environment in a meaningful
way’

In 1958, two years after the Dartmouth workshop on AI, the New York
Times granted bold headlines to the project of a new ‘thinking machine’: the
artificial neural network ‘perceptron’.4 Its inventor, the psychologist Frank
Rosenblatt (at the time only thirty years old), and its sponsor, Marshall
Yovits of the US Office of Naval Research, were looking for good press to
justify the expenditure of taxpayer money. In praise of the invention, the
newspaper cartoonishly reported that ‘the Navy revealed the embryo of an
electronic computer … that it expects will be able to walk, talk, see, write,
reproduce itself and be conscious of its existence’. It was fanfare for the
military, yet some of the article’s exaggerations predicted the creepy future
achievements of deep neural networks. For instance, the article was eerily
prescient regarding face recognition and natural language processing that
would emerge half a century later: ‘Later Perceptrons will be able to
recognize people and call out their names and instantly translate speech in
one language to speech or writing in another language.’5

In the same year, the New Yorker featured more sober coverage in the
form of an interview with Rosenblatt, who clarified that the perceptron was
not ‘a mechanical brain’, as the hype claimed, but a self-organising machine
that could likewise provide ‘an organization of its external environment in a
meaningful way’. Paraphrasing the Hebbian principle of neuroplasticity
(‘Neurons that fire together, wire together’), the magazine gave an accurate
account, for the time, of the working of an artificial neural network:

The distinctive characteristic of the perceptron is that it interacts with its environment,
forming concepts that have not been made ready for it by a human agent. Biologists claim
that only biological systems see, feel, and think, but the perceptron behaves as if it saw, felt,
and thought. Both computers and perceptrons have so-called memories; in the latter,
however, the memory isn’t a mere storehouse of deliberately selected and accumulated facts
but a free, indeterminate area of association units, connecting, as nearly as possible at
random, a sensory input, or eye, with a very large number of response units.

If a triangle is held up to the perceptron’s eye, the association units connected with the
eye pick up the image of the triangle and convey it along a random succession of lines to the
response units, where the image is registered. The next time the triangle is held up to the eye,
its image will travel along the path already travelled by the earlier image. Significantly, once
a particular response has been established, all the connections leading to that response are
strengthened, and if a triangle of a different size and shape is held up to the perceptron, its
image will be passed along the track that the first triangle took.6



What kind of artificial neural network was the perceptron? Rosenblatt
struggled to explain the workings of perceptrons in simple terms and later
lamented that media hype spoiled ‘scientific confidence’.7 At the Cornell
Aeronautical Laboratory in Buffalo, New York, it was filed as ‘Project
PARA: Perceiving and Recognising Automaton’. The Navy – the main
backer of the project – was essentially interested in the automation of target
classification, such as the reconnaissance of enemy vessels through radar,
sonar, or visual data (figs. 9.1 and 9.2).8 Rosenblatt also planned to design,
aside photoperceptrons, a whole class of devices operating with the same
logic which included phonoperceptrons (to recognise words in audio
communications) and radioperceptrons (to recognise objects in radar and
sonar signals).9 Technically speaking, the perceptron was a statistical neural
network for pattern recognition – that is, a self-organising computing
network for the classification of stimuli in a binary way, as briefly
mentioned in previous chapters.





Figure 9.1. Examples of target classification. Albert Murray, ‘Perceptron Applications in Photo
Interpretation’, Photogrammetric Engineering 27, no. 4 (1961): 633.



Figure 9.2. Examples of target classification. Albert Murray, ‘Perceptron Applications in Photo
Interpretation’, Photogrammetric Engineering 27, no. 4 (1961): 634.

The Mark I Perceptron



The first implementation of the perceptron was a computer simulation
written in the SHARE programming language and run, in 1957, on an IBM
704, one of the first commercial mainframes. In the earliest tests, the
computer was fed a series of punched cards, and apparently, after fifty
trials, it ‘taught itself to distinguish cards marked on the left from cards
marked on the right’.10 Rosenblatt considered this proof that a more
complex architecture of the perceptron could be designed to recognise more
complex patterns. Shortly after the New York Times article, this idea took
the form of a bulky piece of hardware which would be completed only in
1960: the legendary Mark I Perceptron which now rests at the Smithsonian
National Museum of American History in Washington, DC (see fig. 9.3).
The Mark I was the same digital computer that had been used by John von
Neumann in the 1940s to make calculations for the Manhattan Project;
however, in this implementation, it was extended by the analogue module of
the Perceptron. Though it was a thousand times slower than the IBM 704,
this hardware–software hybrid allowed a programmer to rewire the network
by hand, which was faster than rewriting a program. The operator’s manual
described it in this way:



Figure 9.3. Mark I Perceptron. Source: Frank Rosenblatt, Principles of Neurodynamics: Perceptrons
and the Theory of Brain Mechanisms, Buffalo, NY: Cornell Aeronautical Laboratory, 1961, iii.

The Mark I Perceptron is a pattern learning and recognition device. It can learn to classify
plane patterns into groups on the basis of certain geometric similarities and differences.
Among the properties which it may use in its discriminations and generalizations are
position in the retinal field of view, geometric form, occurrence frequency, and size. If, of the
many possible bases of classification, a particular one is desired, it can generally be
transferred to the perceptron by a forced learning session or by an error correction training
process. If left to its own resources the perceptron can still divide up into classes the patterns
presented to it, on a classification basis of its own forming. This formation process is
commonly referred to as spontaneous learning.11

The Mark I Perceptron implemented a simple neural network made of
three layers of units that were connected in progression: ‘Sensory or S-
units, Association or A-units, Response or R-units’ (see fig. 9.4).12 The
input layer (also called the ‘retina’) was a 20-by-20-pixel camera, featuring
400 photoreceptors in total. These sensory units were randomly or



topologically connected, with fixed weights, to a layer of 512 associative
units.13 The associative units were themselves connected to eight response
units (R-units, or output) with weights that could be adjusted automatically
(these ‘weights’ were analogue potentiometers that could be also controlled
by hand). Like Warren McCulloch and Walter Pitts’s artificial neurons,
associative and response units operated according to a threshold value: they
would sum up their input values and fire only if the sum was above a given
threshold (see fig. 9.5).14 The operator’s manual described it as a sort of
implementation of the Hebbian rule, but this is perhaps a generous
interpretation:

The A-units, however, differ from the others in that when they do switch on, the excitation
which they transmit to the R-units has a value which is dependent on the comparative
success which that A-unit has had in contributing to the switching of its R-unit in the past.
These values form the memory of the perceptron.15



Figure 9.4. Diagram of the organisation of the Mark I Perceptron (feedback loops not shown). Frank
Rosenblatt, Mark I Perceptron Operators’ Manual. Buffalo, NY: Cornell Aeronautical Laboratory,

1960.





Figure 9.5. Rosenblatt’s sketch of the simple perceptron in the US patent US3287649A. It was
submitted in 1963 and granted in 1966. The patent expired after twenty years in 1983.

In this intricate tangle of wires, one has only to remember that the
parameters that could be trained were the potentiometers linking A-Units
with R-Units. In total, 512 x 8 = 4096 parameters. To be precise, the Mark I
Perceptron was running eight simple perceptrons in parallel, each one for a
dedicated pattern to be recognised. Given a retina of 20-by-20 pixels, each
simple perceptron featured 400 parameters. In any case, in terms of
algorithmic complexity, this was already a big number of variables to be
computed by incremental approximation with the resources of the time.
Today, to give an idea of the different scale of complexity, three lines of
Python code suffice to run the perceptron algorithm on a desktop computer,
whereas a large model such as GPT4 comprises of around 1 trillion
parameters (which requires a large data centre for training and deployment).

The randomness of the initial connections and weights was crucial for
Rosenblatt to demonstrate that the perceptron displayed a capacity of self-
organisation, even when initialised from a chaotic state. Rosenblatt was
enthusiastic about the perceptron’s computing resolution, remarking: ‘It is
clear that with an amazingly small number of units – in contrast with the
human brain’s 1010 nerve cells – the perceptron is capable of highly
sophisticated activity.’16 The architecture of the perceptron could vary and
assume different configurations with more layers and functions. It was
already clear in Rosenblatt’s papers that guessing the optimal configuration
of the computing network was a craft of its own, forming part of the
experimental practice.

Guessing a good architecture for the perceptron was only half of the
problem; the other half was to design a training algorithm and
errorcorrection technique to find the optimal value of the parameters
expressed by the network connections.17 The training procedure was based
on the assumption that if a solution to the classification problem existed (if
the set of images could be linearly separated in two groups), the parameters
would converge to the optimal values in a finite number of steps. A main
algorithm to train the perceptron was the following procedure of step-by-
step approximation, which is basically an automated version of the
technique of differential calculus:



1.
2.
3.

a.

b.

4.

Start off with a perceptron having random weights and a training set.
For the inputs of an example in the training set, compute the perceptron’s output.
If the output of the perceptron does not match the output that is known to be correct for
the example:

If the output should have been 0 but was 1, decrease the weights that had an input of
1.
If the output should have been 1 but was 0, increase the weights that had an input of
1.

Go to the next example in the training set and repeat steps 2–4 until the perceptron
makes no more mistakes.18

Today’s deep learning employs more refined algorithms (such as
gradient descent), but the trial-and-error principle remains the same: (1)
present an image to the neural network; (2) check if the output is correct;
(3) if not, increase or decrease the parameters by a small value; (4) repeat
the procedure until the neural network computes the correct output. Once
again, the problem is finding the most efficient procedure that converges to
the final result in the fewest number of steps. The design of the training
algorithm is a further level of abstraction and problem-solving, which is
distinct from the structure of the neural network. On this view, what many
still call ‘artificial intelligence’ is just a technique of mathematical
optimisation. This is still a case of bruteforce approximation, the logic of
which has become even more ‘brute’ in large models featuring trillions of
parameters. Eventually, it is remarkable that at the heart of the most
advanced techniques of ‘artificial intelligence’, one finds approximation
procedures not dissimilar to those that constituted calculus since antiquity
(see chapter 1).

What was the Mark I Perceptron capable of? In terms of pattern
recognition, not much. It was able to distinguish a black square on the left
of the visual field from one on the right, and to distinguish simple letters if
they were aligned on the centre of its 20-by-20 visual matrix. Its capacity
for pattern recognition (as Marvin Minsky and Seymour Papert
demonstrated in their famous criticism, explained below) was primitive and
restricted to continuous figures. Rosenblatt and his team were aware of its
limitations, but they speculated that architectures with more layers (as deep
learning eventually proved) could perform more complex tasks of
recognition:

It seems reasonable to expect that a machine similar to the Perceptron with a logical depth of
three or more (obtained by two or more layers of A-Units, with each layer providing the



excitation for the next) would be even more powerful than the Perceptron.19

It should be noted that in 1958, Rosenblatt already envisioned spatial
constraints similar to the filters that grounded the idea of convolution neural
networks at the origin of deep learning.20 Specifically, in Neurodynamics,
he mentioned David Hubel and Torsten Wiesel’s study of the cat’s cortex
and their topological constraints, which would later inspire Kunihiko
Fukushima’s ‘neocognitron’ neural network (1980), Yann LeCun’s
architecture known as ‘LeNet’ (1989), and finally AlexNet (2012).21

Rosenblatt was also aware of the logical limits of statistical neural
networks in imitating human intelligence, writing: ‘Statistical separability
alone does not provide a sufficient basis for higher order abstraction. Some
system, more advanced in principle than the perceptron, seems to be
required at this point.’22 To date, lacking a complete theory of statistical
learning, artificial neural networks and deep learning are still at the
epistemic stage of experiments. In other words, they are machines of
unknown potentialities and unpredictable failures.

Brain models and experimental method

The simple perceptron was not the first artificial neural network but the first
adaptive one – meaning it was able not just to recognise patterns but to
learn how to recognise them (and to be rewired in different configurations
in order to learn differently). Although its achievements were primitive, it is
considered, nevertheless, the first classifier algorithm. As previously
illustrated, the neural network architecture was already known: in order to
demonstrate the capacity of self-organisation and adaptation of brain
neurons, Rosenblatt intended to initiate the perceptron with random values.
Rosenblatt then applied an errorcorrection algorithm to gradually adjust
these values and have them converge towards an optimal equilibrium with
external data, achieving in this way ‘intelligence’ as a spontaneous order
emerging from chaos.

The hype around neural networks and self-organising theories (see
chapter 6) initially caused ill feeling and envy among the ‘artificial
intelligentsia’, especially in the circles of symbolic AI that were competing
for the same military funds.23 In order to counteract this negative response,



in 1961 Rosenblatt went on to systematise his research in the lengthy
monograph Principles of Neurodynamics, which, while little studied,
remains the best source to understand the origins of artificial neural
networks. However, an essay from 1964, ‘Analytic Techniques for the
Study of Neural Nets’, better illustrates Rosenblatt’s research perspective.
In this later text, in order to defend the experimental nature of artificial
neural networks, Rosenblatt polemically mobilised the Galilean method
against the Aristotelian one, which, in his view, was still used in other
studies of brain models. Symbolic AI theorists, for instance, believed in the
possibility of encoding the mind’s rules into the machine’s rules
straightforwardly, without experimental testing:

For the two millennia which followed Aristotle, it was believed that the fundamental truths
of nature could be revealed through the application of pure reason, that it was the
philosopher, rather than the experimenter, who might discern the necessary order of nature
through the sheer power of his intellect … Then, at the beginning of the seventeenth century,
the publication of Galileo’s ‘Discourses on Two New Sciences’ gave voice for the first time
to the doctrine of the experimental method. Galileo’s work, advocating a clear alternative to
Aristotelian rationalism, engendered a period of scientific growth and discovery in the
physical sciences which has not yet run its course … It may happen, by coincidence, that
these results have application in the engineering domain, but for present purposes we
propose to work not as inventors, but as discoverers, and the kind of theorizing which leads
to scientific discovery is apt to be quite different from the kind of theorizing which is useful
for engineering synthesis.24

The way in which Rosenblatt claimed the role of ‘discoverer’ rather
than ‘inventor’ can be considered naive but it was somehow a defence of
the experimental and scientific method against the ‘engineer mentality’ of
many cyberneticians. Rosenblatt professed the experimental culture of
artificial neural networks research in particular against the selfproving logic
of symbolic AI. In the introduction to Neurodynamics, similarly, Rosenblatt
echoed McCulloch’s method of ‘experimental epistemology’ to assert that:

a perceptron is first and foremost a brain model, not an invention for pattern recognition. As
a brain model, its utility is in enabling us to determine the physical conditions for the
emergence of various psychological properties. It is by no means a ‘complete’ model, and
we are fully aware of the simplifications which have been made from biological systems; but
it is, at least, an analysable model.25

Siding with brain scientists rather than computer engineers was for
Rosenblatt a way to contend the tentative, partial, and incomplete nature of
the perceptron as an experimental model. In a similar fashion to Hayek,
Rosenblatt maintained that a model of the brain is always an



implementation, that is, a simplification and exaggeration of some of its
traits, as he explained:

Perceptrons are not intended to serve as detailed copies of any actual nervous system. They
are simplified networks, designed to permit the study of lawful relationships between the
organization of a nerve net, the organization of its environment, and the ‘psychological’
performances of which the network is capable. Perceptrons might actually correspond to
parts of more extended networks in biological systems … More likely, they represent
extreme simplifications of the central nervous system, in which some properties are
exaggerated, others suppressed.26

The perceptron was a machine constituted by numerous parameters to
be adjusted in order to approximate a result. If scientific experiments
usually rely on testing models of few parameters, Rosenblatt’s neural
network can be regarded as an experimental simulation par excellence,
given the increasing number of parameters to be determined. This
experimental dimension was missing from symbolic AI, whose algorithms
were instead often based on the opposite assumption – that a limited
number of rules could project unlimited intelligence without much
acknowledgement of the critical role that implementation plays.27 The
perceptron’s numerical parameters were not a representation of the world as
in symbolic AI; they were simply relational and partial elements in the
construction of a non-isomorphic model of the world. This feature would
escalate in deep learning, with algorithmic models such as GPT4 today
featuring trillions of parameters. In fact, despite the seeming simplicity of
its architecture, a neural network requires a number of operations that
exponentially increases just by adding a few layers and connections.
Writing the history of computation from the point of view of algorithmic
complexity – that is, the size of calculations and resource usage – statistical
neural networks such as the perceptron marked a hurdle that, at the time,
could not be successfully crossed due to the lack of computing power.

From symbolic logic to vector space

The first international symposium on the newly established field of AI took
place in November 1958 at the National Physical Laboratory in Teddington,
West London, under the title ‘Mechanisation of Thought Processes’.28 This
event played a key role in the history of AI, but it has been rarely studied;
here, for reasons of space, only Rosenblatt’s contribution is considered.



Rosenblatt took part in the symposium to clarify and defend the
mathematical intuition behind the perceptron – that is, the theorem of
statistical separability of data in a multidimensional space. Standing apart
from the rigid computationalism of other AI scholars who attended the
symposium, Rosenblatt explained that the mathematics of the perceptron
had much more in common with ‘the mathematics of particle physics’,
namely statistics, than with the ‘mathematics of digital computers’.29 In
modelling the brain, Rosenblatt urged his colleagues to depart from the
paradigm of digital computation because ‘Boolean algebra, or symbolic
logic, is well suited to the study of completely describable logical systems,
but breaks down as soon as we attempt to apply it to systems on which
complete information is not available’.30 In favour of his thesis, Rosenblatt
mobilised also the authority of von Neumann, who had passed away just the
year before. As seen already in chapter 7, von Neumann, in one of his last
lectures, stressed:

Logics and mathematics in the central nervous system … must structurally be essentially
different from those languages to which our common experience refers … When we talk
mathematics, we may be discussing a secondary language, built on the primary language
truly used by the central nervous system. Thus the outward forms of our mathematics are not
absolutely relevant from the point of view of evaluating what the mathematical or logical
language truly used by the central nervous system is …31

Von Neumann argued that there is less ‘logical depth’ in the brain than
in a computer, which may require millions of successive logical steps to
imitate a simple thought process (known as the problem of ‘combinatorial
explosion’ mentioned above). Following von Neumann, Rosenblatt
similarly concluded that ‘in dealing with the brain, a different kind of
mathematics, primarily statistical in nature, seems to be involved [as the]
brain seems to arrive at many results directly, or intuitively, rather than
analytically’. It is clear from these passages that Rosenblatt intended to
conceptualise the perceptron not as a logical but as a statistical machine –
that is, as a machine quite different from the paradigm of Boolean and
binary computation that was emerging in those years. The genealogy of the
perceptron points to a technological lineage that is related but clearly
distinct from that of the digital computer.

The invention of the perceptron, in fact, condenses influences that
proceeded from diverse disciplines such as neurology, psychology,
engineering, cybernetics, mathematics, and statistics. Rosenblatt’s book



Neurodynamics is the best source to evidence such a conurbation of ideas.
Aside from von Neumann, in Neurodynamics Rosenblatt credited the
contributions of Nicolas Rashevsky, McCulloch and Pitts, as well as
Minsky for the idea of the logical neural network; Albert Uttley for the
probabilistic model of distributed memory; Ross Ashby for the theory of
self-organisation in machines; Donald Hebb and Hayek for
selfreinforcement in neural pathways; and Gestalt theorists for holistic
perception and distributed memory, among others.32 But, how exactly did
the perceptron constitute a breakthrough in the relation to this tradition? In
a nutshell, as a technical form, the perceptron was an electromechanical
computing network, but as a mathematical form, it expressed a novel trick:
its adjustable parameters represented coordinates in a multidimensional
vector space. This intuition has less to do with neurophysiology than with
statistics. Rosenblatt’s innovation was, as we will see below, to apply the
statistical technique of multidimensional analysis (which had dominated US
psychology in the 1950s) to image recognition. This technique has since
then defined the logical form at the core of machine learning.33

The mathematical ‘trick’ to solve image recognition via
multidimensional analysis can be reconstructed in this way. Each digital
image in a training dataset is a two-dimensional matrix of numerical values
that represent pixels. In addition to being a two-dimensional matrix, each
image can also be defined as a single point in a multidimensional space
whose coordinates are the values of each pixel. For example, given the
resolution of the Mark I Perceptron, an image of 20-by-20 pixels is
equivalent to a single point in a multidimensional space of 400 dimensions.
The projection of digital images onto a multidimensional space discloses
unexpected properties. In such multidimensional space, for example, points
that are closer together designate similar images, while points that are
further apart designate dissimilar images. Furthermore, following the
progression of a value along a single dimension, images can be arranged
according to a specific gradient of similarity. In such a multidimensional
space, pattern recognition can be performed, then, by separating a cluster of
points (which represent a class of similar images) from all the others (which
represent different images). A boundary (or ‘hyperplane’ in technical terms)
can then be drawn to separate this dataspace in two regions, in order to
declare which images belong to a class and which do not. The separation of



the dataspace into two regions is called binary classification (from which
also the term ‘classifier algorithm’ derives).

Rosenblatt’s theorems of statistical separability argued that a perceptron
could automate this act of classification on its own and find a hyperplane to
linearly separate the vector space into two regions: one containing the
images corresponding to the pattern to be ‘learned’, the other not. The
parameters of the mathematical function of the hyperplane are the weights
of the network connections. The weights of the perceptron plot the
hyperplane and adjust its inclination across the hyperspace until the two
clusters are perfectly separated. In the case of the simple perceptron (with
400 weights between association and output units), the hyperplane would be
defined by a linear equation with 400 unknowns. The values of this
equation (which are the weights of the neural network) are found by the
training algorithm through the stepby-step procedure of approximation
abovementioned.

The perceptron is a crucial episode in the history of cultural techniques:
it entails not just a process of digitisation of the picture plane into a two-
dimensional numerical matrix but its vectorisation into a statistical matrix
of multiple dimensions. With this method, the human faculty of image
recognition was translated and reduced to a problem of mathematical
optimisation in a vector space.34 Since then, however, its influence has gone
far beyond image recognition: vectorisation in multiple dimensions has
been applied to all kinds of data and has come to represent the epistemic
form of the ‘intelligence’ that machine learning embodies in general, which
is a form of statistical intelligence.35 The characteristic of ‘intelligence’ that
is anthropomorphised in AI systems is essentially the trick of projecting
data on a multidimensional space in order to perform operations of
clustering, classification, and prediction. At its core, machine learning
exhibits the quality of geometric and spatial ‘intelligence’.

The new vectors of mind

During the 1950s, psychometrics emerged as an influential subfield in the
departments of psychology across US universities. It represented quite a
reductionist turn in the study of the psyche, as it was mainly concerned with
the quantification and statistical measurement of personality traits,



cognitive abilities, and work skills. Eventually, it became a common
practice for many students to render data from psychological tests into
vectors in order to calculate similarities, covariances, and find patterns of
different sorts.

Tracing the origins of the perceptron, the AI scholar Jonathan Penn has
recently found that Rosenblatt already employed psychometric techniques
of multidimensional analysis in his doctoral research, with the purpose of
examining personality profiles. In 1953, Rosenblatt asked two hundred
students of Cornell University to answer a questionnaire about their
childhood using a numerical scale for each answer, pursuing the typical
postulate of psychometrics that ‘personalities can be classified
objectively’.36 In the tradition of the psychometrics of Alfred Binet, Lewis
Terman, Charles Spearman, and especially Louis Leon Thurstone,
Rosenblatt analysed the results through a method of factor analysis in order
to compute the similarity between the numerical matrices of each
questionnaire.37 In this way, the twenty-five-year-old Rosenblatt intended to
prove the mathematical presence of clusters of similar answers and,
therefore, to demonstrate, as a psychometrician of sound faith would do, the
existence of distinguishable personalities.

It was probably towards the end of his PhD that Rosenblatt noticed that
the numerical matrices of cognitive tests looked identical to the numerical
matrices of digital images and began to consider applying the same
techniques of multidimensional analysis to visual pattern recognition. It is
apparent that Rosenblatt’s perceptron was computing patterns of similarity
in numerical images in the same way in which psychometrics was
computing patterns of similarity in the numerical matrices of psychological
profiles.38 This is another example of the spurious and experimental
genealogies of AI, which points, however, to a specific and intriguing
modality of technological innovation in which metrics anticipates
automation: Rosenblatt, in fact, repurposed the tools that were used to
quantify a cognitive task for the automation of the cognitive task itself.

During his PhD, Rosenblatt had another idea that served as a precursor
to the perceptron: he planned to automate statistical analysis with a new
calculating machine that was then called the Electronic Profile Analyzing
Computer (EPAC).39 The journal American Scientist described it in this
way:



An ‘idiot brain’, an electronic computer that can solve only one type of problem, has been
designed and built by a 25-year-old psychology student at Cornell University. The machine
is helping its inventor, Frank Rosenblatt to prepare data for his Ph.D. thesis at the University.
A problem that would take 15 minutes to solve with a desk computer can be solved by the
machine in two seconds. Rosenblatt is testing the idea that personalities can be classified in a
scientific and objective way.40

Predating the Mark I Perceptron, Rosenblatt’s EPAC was a first
experiment in the automation of multidimensional analysis, a task which
was commonly assigned to human ‘computers’ (often women) in the
psychology laboratories of the time. In the same way in which Babbage put
a calculating engine in place of a human computer, it could be said that
Rosenblatt put a computer in place of a statistician, shaping machine
learning as it is understood today. During his PhD, Rosenblatt aimed to
empower psychometrics with the help of a computer, but it was
psychometrics, in fact, that helped to calculate the matrices of artificial
neural networks and contributed to forge a new – statistical this time –
model of the synthetic mind.

It is of historical relevance that the perceptron advanced the automation
of statistical tools precisely in the same years when they were becoming a
predominant method in US psychology. This institutionalisation of statistics
in US psychology between 1940 and 1955 has been studied and confirmed
also by the German psychologist Gerd Gigerenzer. In addition, Gigerenzer
has noticed another critical phenomenon, the transformation of the tools of
psychological analysis into a theory of the mind in its own right:

The statisticians’ conquest of new territory in psychology started in the 1940s … By the
early 1950s, half of the psychology departments in leading American universities offered
courses on Fisherian methods and had made inferential statistics a graduate program
requirement. By 1955, more than 80% of the experimental articles in leading journals used
inferential statistics to justify conclusions from the data … I therefore use 1955 as a rough
date for the institutionalization of the tool in curricula, textbooks, and editorials … In
experimental psychology, inferential statistics became almost synonymous with scientific
method. Inferential statistics, in turn, provided a large part of the new concepts for mental
processes that have fueled the so-called cognitive revolution since the 1960s. Theories of
cognition were cleansed of terms such as restructuring and insight, and the new mind has
come to be portrayed as drawing random samples from nervous fibers, computing
probabilities, calculating analyses of variance (ANOVA), setting decision criteria, and
performing utility analyses. After the institutionalization of inferential statistics, a broad
range of cognitive processes, conscious and unconscious, elementary and complex, were
reinterpreted as involving ‘intuitive statistics’.41



Gigerenzer provides a realistic periodisation that is compatible with the
adoption of statistical techniques also in the artificial neural networks
research. Considering Rosenblatt’s PhD (1956) and his first paper on the
perceptron (1957), the 1950s are indeed the years in which statistical tools
of multidimensional analysis made an interdisciplinary leap and were
applied to artificial neural networks and the automation of pattern
recognition. It is through this path that psychometrics entered the history of
AI and imparted a statistical mentality to it.

These advancements come as no surprise considering that, at the
beginning of the century, psychology had already attempted to quantify
human intelligence in a statistical way. Indeed, the automation of
intelligence in the twentieth century was prepared by its measurement in the
nineteenth century, by the establishment of a standard metrology of
cognitive abilities (such as solving a puzzle or recognising a picture) rather
than the study of the mind’s logic. As pointed out by the historian of science
Simon Schaffer:

Since the Enlightenment, neurology, anthropology and physiology have often relied on such
measures: oxygen flow, pulse rate, galvanic activity, phrenological charts, cerebral
thermometry or – most pervasively – cranial capacity have all been used as markers of
underlying brain activity and thus intellectual, social and moral rank. No doubt the
instruments used to make such measures then become the source of neurological metaphor.
But this kind of cerebral metrology embraces a wider history than that which links
craniometry with more recent strategies of intelligence testing and psychometrics.42

To what extent could the performance of a machine be judged as
‘intelligent’ – that is, commensurable (measurable in the same terms) with
human intelligence? Since the Turing test, machines have been judged as
‘intelligent’ by comparing their behaviour with social conventions.
Cybernetics investigated this question in a different way, that is, by
postulating a common ‘mechanism’ (whatever logical or physiological)
between humans and machines. But in the decades prior to cybernetics and
computer science, psychometrics had already turned human intelligence
into a quantifiable (and potentially computable) object. In the early
twentieth century, Spearman, for instance, proposed the statistical
measurement of ‘general intelligence’ (or g factor) as the correlation
between unrelated tasks in a skill test.43 For Spearman, these correlations
mathematically demonstrated the existence of an underly- ing cognitive
faculty that common sense would refer to as ‘intelligence’.44 Spearman’s



analysis was based on two factors: general intelligence (g) and specific
ability (s). A few decades later, Thurstone criticised Spearman’s reduction
of intelligence to only two factors and proposed the consideration of
multiple factors, listing up to seven intelligence attributes or ‘primary
mental abilities’.45 There was enthusiasm about the flexibility of these
statistical techniques which could potentially escalate the number of their
dimensions and model the most complex aspects of mind and the world. In
1935, Thurstone published a book by the visionary title The Vectors of
Mind, which aimed to provide students with an accessible introduction to
multifactor analysis, moving psychol- ogy closer and closer to the mentality
of statistics.46

Such a quantitative measure of intelligence, abstracted from social
circumstances and deprived of any historical contexts, supported, however,
a meritocratic social order and helped consolidate, among others, the
questionable practice of measuring the intelligence quotient (IQ). These
techniques were, and still are, instrumental to maintaining social hierarchies
and racial segregation, and in disciplining the workforce. It must be
remembered that the pseudoscience of psychometrics was founded by the
English statistician Francis Galton with the racist and eugenicist agenda of
demonstrating a correlation between intelligence and ethnicity.47 It is
perhaps no coincidence that a system for mathematically discriminating
between humans of different classes and ‘races’ has been subsequently used
to equate humans to machines.

Spearman’s g factor contributed to the reification of ‘intelligence’ as a
new scientific ‘object’ that could be statistically measured. As mentioned
above, Gigerenzer has also noticed a similar process of reification of a tool
of inquiry into a paradigm of thought in the field of psychology – a process
which he defines as ‘tool-to-theory heuristics’.48 As he noted, in the
psychology of the mid-twentieth century, the ‘statistical tools’ of
psychometrics eventually ‘turned into theories of mind’ in psychology.
Together with Daniel Goldstein, Gigerenzer has described how the adoption
of statistical tools gradually also popularised the computational metaphor of
the mind, adding to its plausibility. According to them, it was specifically
the influence of statistical tools such as the Neyman–Pearson theory of
hypothesis testing and Roland Fisher’s analysis of variance (ANOVA) that



helped to consolidate the metaphor of the mind as a computer in the second
half of the twentieth century.49

The transformation of a tool of inquiry into a model of the mind is
exemplified also by the case of the perceptron, in which a statistical
technique implicitly became a brain model (and, ultimately, a model of
collective knowledge). The invention of statistical neural networks implied,
in their construction, the ‘mind as an intuitive statistician’ and, conversely,
also made statistics the model of the new artificial mind.50 Statistical tools
have become since then not only a model of ‘intelligence’ in psychology
but also a model of ‘artificial intelligence’ in the development of labour
automation. Eventually, a whole statistical view of the world and society
underwent a process of automation, so to speak, as it became increasingly
normalised and naturalised through AI.

Hacking the vector space

In their 1969 book Perceptrons, Marvin Minsky and Seymour Papert
demonstrated in mathematical terms that Rosenblatt’s simple perceptron
was unable to recognise certain patterns, questioning in this way its
capacity for generalisation to other tasks of human intelligence.51

Specifically, the book argued that certain images, once projected onto the
multidimensional space, could not be linearly separated by the simple
perceptron: in particular, the perceptron could not discriminate connected
from disconnected figures. The theorem was illustrated with odd-shaped
images that could lead the perceptron to misfire a wrong classification, and
the cover of the book featured two intricate spirals that could also deceive
the human eye (while they looked identical at first sight, one was
continuous and the other composed of two distinguished spirals). In logical
terms, the theorem explained that a perceptron reduced to only two input
neurons could ‘learn’ the AND, OR, and NOT logic functions but not the
more complex XOR (exclusive-OR).52

For the first time, the vector space of an artificial neural network was
‘hacked’ and its vulnerability exposed. Minsky and Papert’s conclusions
were true only for the simplest class of perceptrons (which featured only
one layer of neurons), but they were received as valid for all configurations
of artificial neural networks and had a devastating effect on the whole



research field. This initiated the first ‘winter of AI’ – which was in fact the
imposition of the ‘MIT winter’ on other research communities. Minsky and
Papert’s attitude was somewhat baronial and recalcitrant: they manifestly
sought to divert military funding back to MIT – not exactly a needy
institution – and to demonstrate that artificial neural networks did not
constitute true ‘artificial intelligence’, as other techniques would reveal the
virtuous path towards this goal. It should be remembered that already in his
1961 monograph Neurodynamics, Rosenblatt proposed different
configurations of ‘multi-layer perceptrons’ that could overcome these
limitations, but a convergence theorem could not be proven, and an efficient
training algorithm (such as gradient descent) was not yet known. As the
computer scientist Richard Forsyth has noted, however, only two years after
the publication of Perceptron, in 1971, it was proven that ‘a simple Mark I
Perceptron, modified to incorporate an expansion recorder, could be taught
to solve the exclusive-OR problem’ but ‘it had no effect on the widespread
belief among computer scientists that neurocomputing was something that
had been tried and had failed’.53

Among other aspects, Minsky and Papert noticed (as also had
Rosenblatt) that artificial neural networks are not able to distinguish well
between figure and ground: in their computation of the visual field, each
point gains somehow the same priority – which is not the case with human
vision. This happens because artificial neural networks have no ‘concept’ of
figure and ground, which they replace with a statistical distribution of
correlations (while the figure–ground relation implies a model of
causation). The problem has not disappeared with deep learning: it has been
discovered that large convolutional neural networks such as AlexNet,
GoogleNet, and ResNet-50 are still biased towards texture in relation to
shape. It may happen that they discriminate between the images of an
elephant and a cat, for instance, not according to their shape but according
to the texture of their skin and fur, respectively. The texture-over-shape bias
occurs because even convolutional neural networks (which are specifically
designed to extract edges, features, and details) still compute a statistical
distribution of the whole data and not only of its ‘meaningful’ parts (as the
human mind does, according to the Gestalt school). This was all the more
true in the case of Rosenblatt’s simple perceptron back then, but this
problem of resolution in the rendering of common knowledge extends
probably also to large foundation models such as the contemporary GPT.54



One can argue that Minsky and Papert conceived the first adversarial
method for hacking an ‘intelligent machine’ and designed the
corresponding ‘adversarial patches’, as they are called today – the doctored
pictures that can fool deep neural networks for image recognition.55 As a
hack, it was quite successful in that it managed to derail military funding
and neural networks research until the late 1980s. Beyond the issues at
stake in the controversy, Minsky and Papert nonetheless contributed to a
critique of the knowledge paradigm that artificial neural networks embody
and to the divulgation of the limitations of multidimensional modelling.

However, there is a tendency in the AI community, including in critical
AI studies, to take sides in the ‘perceptrons’ controversy, mobilising
viewpoints and philosophical traditions that would, alternatively, justify
either symbolic or connectionist AI as the more rational or progressive
paradigm, or as the more capable of causal thinking. Other readings
conflate both schools under the same instrumentalist agenda of the military
and its power genealogy. This book has proposed a different approach,
namely to study and evaluate these AI lineages from the (externalist)
perspective of labour automation, rather than as an (internalist) problem of
computational logic, task performance, and human likeness. Neither
deductive algorithms nor statistical techniques excel in mimicking human
intelligence, because there is no inner logic to discover in human
intelligence. Human cognition and machine tasks can be studied and
compared because intelligence, whether ‘natural’ or ‘artificial’, is
extroverted, contextual, and situated by constitution. Machines can be
perceived as ‘thinking’ because they mimic the theatre of the human.

The adoption of statistical tools by machine learning is a counterproof,
in all its controversial legacy, that the master algorithm of ‘artificial general
intelligence’, understood as the dream of technological singularity and
alpha machine by a large community of engineers and computer scientists,
is precisely a statistical illusion projected by data. In other words, the
master algorithm does not exist as algorithm, but only as an originary
extended social form.

The social calculus of knowledge



In the 1980s, in his book The Vision Machine, it was the French theorist
Paul Virilio who would rediscover the then little-known case of the
perceptron as part of the industrial and military spectrum of projects for the
‘automation of perception’. Yet these military origins should not distract
from seeing the perceptron in the larger genealogy of labour automation,
social control, and knowledge extractivism. Alongside the known
automation of manual and mental labour, the perceptron pioneered the
automation of a different kind of labour: the labour of perception, or
supervision. This is the task of surveilling machines (Maschinenarbeit in
Marx) but also workspaces and assembly lines with a clear disciplinary
function when it takes place under the eye of the authority, such as masters,
guards, and policemen. As the media scholar Jonathan Beller has
summarised, ‘to look is to labour’ and has been so for a long time; but ‘to
look is to organise labour’ as well, and the eye of the master has been doing
so all along.56 Optical media such as cinema and photography have often
been involved in the automation of the gaze and the surveillance of labour
in the past, and experiments of pattern recognition such as the perceptron
have simply articulated these previous regimes of machine vision to a
further stage.

As seen in chapter 2, the industrial age pursued the mechanisation of
manual labour with tooling machines and steam engines, and, with
Babbage, the mechanisation of mental labour under the form of hand
calculation and symbol manipulation (which are still quite ‘manual’
activities, as the names indicate). In the mid-twentieth century, mainframe
computers extended the automation of mental labour as calculation and
symbol manipulation in state administration, large companies, and scientific
research. Compared to this history, the labour of supervision was
mechanised in a different way. A novel aspect of the perceptron (and of
pattern recognition algorithms in general) lies in the fact that a machine, for
the first time, sought to automate so high a speculative faculty as the act of
recognising – that is interpreting – an image, as opposed to the
manipulation of symbols of given meaning. Rosenblatt defined the
perceptron as a machine for the ‘interpretation of the environment’, arguing
that the ‘conceptualization of the environment is the first step towards
creative thinking’, and under this respect, in fact, the perceptron can be
defined also as an interpretation machine.57



In today’s technical jargon of machine learning, the perceptron is a
classifier – that is, an algorithm for statistically discriminating among
images and assigning them a class or category (also known as a ‘label’) in a
given cultural taxonomy. This, perhaps the most important aspect of the
classifiers, has nothing to do with their internal logic but with the
association of their output to an external convention that establishes the
meaning of an image or other symbol in a given culture. Gestalt theory,
cybernetics, and symbolic AI each intended to identify the internal laws of
perception, but the key feature of a classifier such as the perceptron is to
record external rules – that is, social conventions. Ultimately, an artificial
neural network is an extroverted machine, a machine projected towards the
outside, because the interpretation of an image, for example, is always
affected more by experience and external social factors than by internal
physiological circuits.

A classification algorithm such as the perceptron does not automate
reasoning understood as a capacity of symbolic manipulation, but rather as
situated knowledge which is part of the cultural heritage of a given context.
The act of image recognition or pattern classification is a specific kind of
mental labour: it is a profoundly social act that mobilises, at the same time,
tacit and explicit know-how, scientific and traditional taxonomies, and
vernacular and technical grammars – in short, knowledgemaking as a
historical and often conflicting process. Although the industrial task of
machine supervision can be highly codified, pattern recognition ‘in the
wild’ remains a gesture of open interpretation rather than a strict rule-based
procedure. For these reasons, a machine which is designed to automate such
an epistemic mess (see the project of selfdriving cars) encounters, then as
now, great difficulties. Moreover, the recent debates on gender, class, and
racial bias in machine learning systems for face recognition reminds us
what semioticians, philosophers of language, and art historians have always
known: that image interpretation is an act that bears unresolvable political
implications. In this regard, critical AI scholars Michael Castelle and Tyler
Reigeluth have proposed to compare machine learning to the theory of
learning as a social process by the Soviet psychologist Lev Vygotsky.58 The
semiotic structure of the classifier, which is basically an imitation machine,
confirms what Vygotsky argued: that there is no inner logic to discover in
intelligence, because intelligence is a social process by constitution.



In conclusion, Rosenblatt’s initial experiment to automate pattern
recognition with a small matrix of 400 dimensions resulted, after the design
of convolutional neural networks in the 1980s and the rise of deep learning
in the 2010s, in the algorithmic modelling of vast inventories of
spontaneous knowledge, mass communication, and cultural heritage. The
perceptron was an experiment of visual pattern recognition that thereafter
was extended to the analysis of non-visual data, into a novel ‘pattern
recognition’ across datasets of cultural, social, and scientific kind. In the
age of deep learning, the architecture of the multilayered perceptron ended
up being not a model of the biological brain but of the collective mind,
eventually expressing its original ontology shaped by psychometrics. In
fact, probably the most crucial moment in the history of AI is when, with
Rosenblatt’s perceptron, artificial neural networks inherited the techniques
of multidimensional analysis from psychometrics and statistics. This made
possible not only pattern recognition but also the computation of data of
much-higher dimensions – a feature that would come to be key, half a
century later, in the age of ‘big data’. As is well known, the unfortunate
term ‘big data’ does refer to data that are not only vast in size but diverse in
terms of typology – rendered in statistics as ‘dimensions’. Nowadays,
companies such as Google, Amazon, Facebook, and Twitter, for example,
collect data that define an extensive manifold of dimensions about their
users, such as location, age, gender, nationality, language, education, job,
number of contacts, along with political orientation, cultural interests, and
so on. The variety of social dimensions that these platform companies can
analyse is vertiginous, exceeding the imagination of any well-trained
statistician. The rise of machine learning algorithms is, then, also the
response to the dimensionality explosion of social data rather than simply to
an issue of information overload.

Eventually, in the past decade, machine learning has grown into an
extensive algorithmic modelling of collective knowledge, a ‘social calculus’
that aims to encode individual behaviours, community life, and cultural
heritage under the form of vast architectures of statistical correlations.59

This has helped establish a monopolistic regime of knowledge extractivism
on a global scale and new techniques for the automation of labour and
management. As with only a few other artefacts of our epoch, AI has come
to exemplify a unique concentration of power as knowledge.



Conclusion: The Automation of General
Intelligence
 

We want to ask the right questions. How do the tools work? Who finances and builds them,
and how are they used? Whom do they enrich, and whom do they impoverish? What futures
do they make feasible, and which ones do they foreclose? We’re not looking for answers.
We’re looking for logic.

Logic Magazine manifesto, 20171

We live in the age of digital data, and in that age mathematics has become the parliament of
politics. The social law has become interwoven with models, theorems and algorithms. With
digital data, mathematics has become the dominant means in which human beings
coordinate with technology … Mathematics is a human activity after all. Like any other
human activity, it carries the possibilities of both emancipation and oppression.

Politically Mathematics manifesto, 20192

Relics of bygone instruments of labour possess the same importance for the investigation of
extinct economic formations of society as do fossil bones for the determination of extinct
species of animals. It is not what is made but how, and by what instruments of labour, that
distinguishes different economic epochs. Instruments of labour not only supply a standard of
the degree of development which human labour has attained, but they also indicate the
social relations within which men work.

Karl Marx, Capital, 18673

There will be a day in the future when current AI will be considered an
archaism, one technical fossil to study among others. In the passage from
Capital quoted above, Marx suggested a similar analogy that resonates with



today’s science and technology studies: in the same way in which fossil
bones disclose the nature of ancient species and the ecosystems in which
they lived, similarly, technical artefacts reveal the form of the society that
surrounds and runs them. The analogy is relevant, I think, for all machines
and also for machine learning, whose abstract models do in reality encode a
concretion of social relations and collective behaviours, as this book has
tried to demonstrate in reformulating the nineteenth-century labour theory
of automation for the age of AI.

This book began with a simple question: What relation exists between
labour, rules, and automation, i.e., the invention of new technologies? To
answer this question, it has illuminated practices, machines, and algorithms
from different perspectives – from the ‘concrete’ dimension of production
and the ‘abstract’ dimension of disciplines such as mathematics and
computer science. The concern, however, has not been to repeat the
separation of the concrete and abstract domains but to see their coevolution
throughout history: eventually to investigate labour, rules, and automation,
dialectically, as material abstractions. Chapter 1 emphasised this aspect by
highlighting how ancient rituals, counting tools, and ‘social algorithms’ all
contributed to the making of mathematical ideas. To affirm, as did the
introduction, that labour is a logical activity is not a way of abdicating to
the mentality of industrial machines and corporate algorithms, but rather of
recognising that human praxis expresses its own logic (an anti-logic, some
might say) – a power of speculation and invention, before technoscience
captures and alienates it.4

The thesis that labour has to become ‘mechanical’ on its own, before
machinery replaces it, is an old fundamental principle that has simply been
forgotten. As illustrated in part I, it dates back at least to Adam Smith’s
exposition in The Wealth of Nations (1776), which Hegel also commented
upon already in his Jena lectures (1805–06). Hegel’s notion of abstract
labour, as labour that gives form to machinery, was already indebted to
British political economy before Marx contributed his own radical critique
of the concept. As seen in chapter 2, however, it fell to Charles Babbage to
systematise Adam Smith’s insight in a consistent labour theory of
automation. Babbage complemented this theory with the principle of labour
calculation (known since then as the ‘Babbage principle’) to indicate that
the division of labour also allows the precise computation of labour costs.
Part I of this book can be considered an exegesis of Babbage’s two



principles of labour analysis and their influence on the common history of
political economy, automated computation, and machine intelligence.
Although it may sound anachronistic, Marx’s theory of automation and
relative surplus-value extraction share common postulates with the first
projects of machine intelligence.

Marx overturned the industrialist perspective – ‘the eye of the master’ –
that was inherent in Babbage’s principles. In Capital, he argued that the
social relations of production (the division of labour within the wage
system) drive the development of the means of production (tooling
machines, steam engines, etc.) and not the other way around, as
technodeterministic readings have been claiming then and now by centring
the Industrial Revolution around technological innovation only. Of these
principles of labour analysis Marx made also something else: he considered
the cooperation of labour not only as a principle to explain the design of
machines but also to define the political centrality of what he called the
Gesamtarbeiter, the general worker. The figure of the general worker was a
way of acknowledging the machinic dimension of living labour and
confronting the ‘vast automaton’ of the industrial factory on the same scale
of complexity. Eventually, it was also a necessary figure to ground, on a
more solid politics, the ambivalent idea of the general intellect that
Ricardian socialists such as William Thompson and Thomas Hodgskin
pursued, as seen in chapter 4.

From the assembly lines to pattern recognition

This book has provided an expanding history of the division of labour and
its metrics as a way to identify the operative principle of AI in the long run.
As we have seen, at the turn of the nineteenth century, the more the division
of labour extended into a globalised world, the more troublesome its
management became, requiring new techniques of communication, control,
and ‘intelligence’. While, within the manufactory, labour management
could be still sketched in a simple flow chart and measured by a clock, it
was highly complicated to visualise and quantify what Émile Durkheim,
already in 1893, defined as ‘the division of social labour’.5 The
‘intelligence’ of the factory’s master could no longer survey the entire
production process in a single glance; now, only the infrastructures of



communication could achieve this role of supervision and quantification.
New mass media, such as the telegraph, telephone, radio, and television
networks made possible communication across countries and continents,
but they also opened up new perspectives on society and collective
behaviours. As seen in chapter 5, James Beniger aptly described the rise of
information technologies as a ‘control revolution’ that proved necessary in
that period for governing the economic boom and commercial surplus of the
Global North. After World War II, the control of this extended logistics
became the concern of a new discipline of the military that bridged
mathematics and management: operations research. However, it should be
considered that also the transformations of the working class within and
across countries, marked by cycles of urban conflicts and decolonial
struggles, were among the factors that prompted the rise of these new
technologies of control. Chapter 6 endeavoured to trace the historical
coincidence between cybernetic projects of self-organisation and the social
drives to self-organisation after World War II, as exemplified by
countercultural and anti-authoritarian movements.

The scale shift of labour composition from the nineteenth to the
twentieth centuries affected also the logic of automation, that is, the
scientific paradigms involved in this transformation. The relatively simple
industrial division of labour and its seemingly rectilinear assembly lines
could easily be compared to a simple algorithm, a rulebased procedure with
an ‘if/then’ structure which has its equivalent in the logical form of
deduction. Deduction, not by coincidence, is the logical form that via
Leibniz, Babbage, Shannon, and Turing innervated into electromechanical
computation and eventually symbolic AI. Deductive logic is useful for
modelling simple processes, but not systems with a multitude of
autonomous agents, such as society, the market, or the brain. In these cases,
deductive logic is inadequate because it would explode any procedure,
machine, or algorithm into an exponential number of instructions (see
chapter 7). Out of similar concerns, cybernetics started to investigate self-
organisation in living beings and machines to simulate order into high-
complexity systems that could not be easily organised according to
hierarchical and centralised methods. This was fundamentally the rationale
behind connectionism and artificial neural networks (as discussed in chapter
9) and also early research on distributed networks of communication such
as Arpanet (the progenitor of the internet).



Across the twentieth century, many other disciplines recorded the
growing complexity of social relations. The twin concepts of Gestalt and
pattern, for instance, as employed respectively by Kurt Lewin and Friedrich
Hayek and described earlier in this book, were an example of how
psychology and economics responded to a new composition of society.
Lewin introduced holistic notions such as force field and hodological space
to map group dynamics at different scales between the individual and the
mass society.6 Meanwhile, as we saw in chapter 8, Hayek hijacked the
disparate notion of pattern in order to sketch a theory of the market and the
mind based on radical individualism.

French thought has been particularly fertile and progressive in this
direction. The philosophers Gaston Bachelard and Henri Lefebvre
proposed, for example, the method of rhythmanalysis, as a study of social
rhythms in the urban space (which Lefebvre described according to the four
typologies of arrhythmia, polyrhythmia, eurhythmia, and isorhythmia).7 In
a similar way, French archaeology engaged with the study of expanded
forms of social behaviour in ancient civilisations. For instance, the
paleoanthropologist André Leroi-Gourhan, together with others, introduced
the idea of the operational chain (chaîne opératoire) to explain the way pre-
historic humans produced utensils.8 At the culmination of this long tradition
of diagrammatisation of social behaviours in French thought, Gilles
Deleuze wrote his famous ‘Postscript on the Society of Control’, which
declared that power was no longer concerned with the discipline of
individuals but with the control of dividuals, that is of the fragments of an
extended and deconstructed body.9

Lewin’s force fields, Lefebvre’s urban rhythms, and Deleuze’s dividuals
can be seen as predictions of the principles of algorithmic governance
which have been established with the network society and its vast data
centres since the late 1990s. The 1998 launch of Google’s PageRank
algorithm – a method for organising and searching the chaotic hypertext of
the web – is considered, by convention, the first large-scale elaboration of
‘big data’ from digital networks.10 These techniques for network mapping
have become nowadays ubiquitous: Facebook, for instance, uses the Open
Graph protocol to quantify the networks of human relations that feed the
attention economy of its platform.11 The US military has been using its own
controversial techniques of pattern-of-life analysis to map social networks



in war zones and to identify targets of drone strikes which, as known, have
killed innocent civilians.12 More recently, gig economy platforms and
logistics giants such as Uber, Deliveroo, Wolt, and Amazon started to trace
their fleet of riders and drivers via geolocation apps.13 All these techniques
are part of the new field of ‘people analytics’ (also known as ‘social
physics’ or ‘psychographics’), which is but the application of statistics, data
analytics, and machine learning to the problem of labour power in post-
industrial society.14

The automation of psychometrics, or general intelligence

If attractive concepts such as ‘pattern’, ‘Gestalt’, or ‘model’ are not situated
in an economic perspective (an opportunity Hayek, for instance, did not
miss), their use may easily turn into a self-referential culturalist exercise.
The division of labour as much as the design of machines and algorithms
are not abstract forms per se but means for measuring labour and social
behaviours and discriminating people according to their productive
capacity. As the Babbage principles outlined in chapter 2 indicate, any
division of labour entails a metrics: a measurement of workers’
performativity and efficiency, but also a judgement about classes of skill,
which involves an implicit social hierarchy. Metrics of labour were
introduced to assess what is and is not productive, to manipulate a social
asymmetry while declaring an equivalence to the money system. During the
modern age, factories, barracks, and hospitals have pursued a discipline and
organisation of bodies and minds with similar methods, as Michel Foucault
sensed among others.

At the end of the nineteenth century, the metrology of labour and
behaviours found an ally in a new field of statistics: psychometrics.
Psychometrics had the purpose of measuring the skills of the population in
resolving basic tasks, making statistical comparisons on cognitive tests
rather than taking measurements of physical performance as in the earlier
field of psychophysics.15 As part of the controversial legacy of Alfred
Binet, Charles Spearman, and Louis Thurstone, psychometrics can be
considered one of the main genealogies of statistics, which has never been a
neutral discipline so much as one concerned with the ‘measure of man’, the
institutions of norms of behaviour, and the repression of abnormalities.16



The transformation of the metrics of labour into the psychometrics of labour
is a key passage for both management and technological development in the
twentieth century. It is telling, as we saw in chapter 9, that in designing the
first artificial neural network perceptron Frank Rosenblatt was not only
inspired by theories of neuroplasticity but also by tools of multivariable
analysis that psychometrics imported into US psychology in the 1950s.

From this perspective, this book attempted to clarify how the project of
AI has actually emerged from the automation of the psychometrics of
labour and social behaviours rather than the quest to solve the ‘enigma’ of
intelligence. In a concise summary of the history of AI, one could say that
the mechanisation of the ‘general intellect’ of the industrial age into the
‘artificial intelligence’ of the twenty-first century was made possible thanks
to the statistical measurement of skill, such as Spearman’s ‘general
intelligence’ factor and its subsequent automation into artificial neural
networks. If in the industrial age the machine was considered as an
embodiment of science, knowledge, and the ‘general intellect’ of workers,
in the information age artificial neural networks became the first machine to
encode ‘general intelligence’ into statistical tools – at the beginning,
specifically, to automate pattern recognition as one of the key tasks of
‘artificial intelligence’. In short, the current form of AI, machine learning, is
the automation of the statistical metrics which were originally introduced to
quantify cognitive, social, and work-related abilities. The application of
psychometrics through information technologies is not a phenomenon
unique to machine learning. The 2018 Facebook–Cambridge Analytica data
scandal, in which the consulting firm was enabled to collect the personal
data of millions without their consent, is a reminder of how large-scale
psychometrics is still used by corporate and state actors in the attempt to
predict and manipulate collective behaviours.17

Given their legacy in the statistical tools of nineteenth-century
biometrics, it is also not surprising that deep artificial neural networks have
recently unfolded into advanced techniques of surveillance, such as facial
recognition and pattern-of-life analysis. Critical AI scholars such as Ruha
Benjamin and Wendy Chun, among others, have exposed the racist origins
of these techniques of identification and profiling that, like psychometrics,
almost represent technical proof of the social bias of AI.18 They have
rightly identified the power of discrimination at the core of machine
learning, and how this aligns it with the apparatuses of normativity of the



modern age, including the questionable taxonomies of medicine, psychiatry,
and criminal law.19

The metrology of intelligence pioneered in the late nineteenth century,
with its implicit and explicit agenda of social and racial segregation, still
operates at the core of AI to discipline labour and replicate productive
hierarchies of knowledge. The rationale of AI is therefore not only the
automation of labour but the reinforcement of these social hierarchies in an
indirect way. By implicitly declaring what can be automated and what
cannot, AI has imposed a new metrics of intelligence at each stage of its
development. But to compare human and machine intelligence implies also
a judgement about which human behaviour or social group is more
intelligent than another, which workers can be replaced and which cannot.
Ultimately, AI is not only a tool for automating labour but also for imposing
standards of mechanical intelligence that propagate, more or less invisibly,
social hierarchies of knowledge and skill. As with any previous form of
automation, AI does not simply replace workers but displaces and
restructures them into a new social order.

The automation of automation

Looking carefully at how statistical tools that were conceived to rate
cognitive skills and discriminate between people’s productivity turned into
algorithms, a more profound aspect of automation becomes apparent. In
fact, the study of the metrology of labour and behaviours reveals that
automation emerges in some cases from the transformation of the
measurement instruments themselves into kinetic technologies. Tools for
labour quantification and social discrimination have become ‘robots’ in
their own right. Before psychometrics, one could refer to how the clock
used to measure labour time in the factory was later implemented by
Babbage for the automation of mental labour in the Difference Engine (see
chapter 2). Cyberneticians such as Norbert Wiener still considered the clock
as a key model for both the brain and the computer. In this respect, the
historian of science Henning Schmidgen has noted how the chronometry of
nervous stimuli contributed to the consolidation of brain metrology and also
McCulloch and Pitts’s model of neural networks.20 The theory of
automation which this book has illustrated, then, does not point only to the



emergence of machines from the logic of labour management but also from
the instruments and metrics for quantifying human life in general and
making it productive.

This book has sought to show that AI is the culmination of the long
evolution of labour automation and quantification of society. The statistical
models of machine learning do not appear, in fact, to be radically different
but rather homologous to the design of industrial machines: they are indeed
constituted by the same analytical intelligence of tasks and collective
behaviours, albeit with a higher degree of complexity (i.e., number of
parameters). Like industrial machines whose design gradually emerged
through routine tasks and trial-and-error adjustments, machine learning
algorithms adapt their internal model to the patterns in the training data
through a comparable trial-and-error process. The design of a machine as
well as the model of a statistical algorithm can be said to follow a similar
logic: both are based on the imitation of an external configuration of space,
time, relations, and operations. In the history of AI, this was as true of
Rosenblatt’s perceptron (which aimed to record the gaze’s movements and
spatial relations of the visual field) as of any other machine learning
algorithm nowadays (e.g., support vector machines, Bayesian networks,
transformer models).

Whereas the industrial machine embodies the diagram of the division of
labour in a determined way (think of the components and limited ‘degrees
of freedom’ of a textile loom, a lathe, or a mining excavator), machine
learning algorithms (especially recent AI models with a vast numbers of
parameters) can imitate complex human activities.21 Although with
problematic levels of approximation and bias, a machine learning model is
an adaptive artefact that can encode and reproduce the most diverse
configurations of tasks. For example, one and the same machine learning
model can emulate the movement of robotic arms in assembly lines as
much as the driver’s operations in a self-driving car; the same model can
also translate between languages as much as describe images with
colloquial words.

The rise of large foundation models in recent years (e.g., BERT, GPT,
CLIP, Codex) demonstrates how one single deep learning algorithm can be
trained on one vast integrated dataset (comprising text, images, speech,
structured data, and 3-D signals) and used to automate a wide range of so-
called downstream tasks (question answering, sentiment analysis,



information extraction, text generation, image captioning, image generation,
style transfer, object recognition, instruction following, etc.).22 For the way
in which they have been built on large repositories of cultural heritage,
collective knowledge, and social data, large foundation models are the
closest approximation of the mechanisation of the ‘general intellect’ which
was envisioned in the industrial age. An important aspect of machine
learning that foundation models demonstrate is that the automation of
individual tasks, the codification of cultural heritage, and the analysis of
social behaviours have no technical distinction: they can be performed by
the one and same process of statistical modelling.

In conclusion, machine learning can be seen as the project to automate
the very process of machine design and model making – which is to say, the
automation of the labour theory of automation itself. In this sense, machine
learning and, specifically, large foundation models represent a new
definition of the Universal Machine, for their capacity is not just to perform
computational tasks but to imitate labour and collective behaviours at large.
The breakthrough that machine learning has come to represent is therefore
not just the ‘automation of statistics’, as machine learning is sometimes
described, but the automation of automation, bringing this process to the
scale of collective knowledge and cultural heritage.23 Further, machine
learning can be considered as the technical proof of gradual integration of
labour automation with social governance. Emerging out of the imitation of
the division of labour and psychometrics, machine learning models have
gradually evolved towards an integrated paradigm of governance that
corporate data analytics and its vast datacentres well exemplify.

At this point of analysis, it is important to mention that intrinsic limits
affect the current form of machine learning. In a paper published in
September 2021, Neil Thompson and other computer scientists argue that
the error-correction techniques of deep learning have reached a
computational limit and are unable to grow without paying exorbitant costs
of energy and hardware resources which not even big corporations could
soon afford.24 The issue of computational explosion, which cyclically
reappears in the history of AI, this time affects artificial neural networks.
These findings, which can be generalised to other algorithms and error-
correction techniques, simultaneously prove that the ‘intelligence
explosion’ of AI is a mirage. As such, when critical theory engages with
cartoonish campaigns to discover the ‘alien intelligence’ hidden in the black



box of AI, it often neglects this logical limit. What scholars perceive as
‘alien intelligence’ is, more prosaically, the game of statistical correlations
at a very large scale. There is no evidence of a ‘singularity’ phenomenon in
this game of correlations and, given its computational constraints, current
AI runs no risk of becoming the malevolent ‘superintelligence’ of which
Oxford scholar Nick Bostrom has warned.

Undoing the master algorithm

Given the growing size of datasets, the training costs of large models, and
the monopoly of the cloud infrastructure that is necessary to host such
models by a few companies such as Amazon, Google, and Microsoft (and
their Asian counterparts Alibaba and Tencent), it has become evident to
everyone that the sovereignty of AI remains a tough affair of geopolitical
scale. Moreover, the confluence of different apparatuses of governance
(climate science, global logistics, and even health care) towards the same
hardware (cloud computing) and software (machine learning) signals an
even stronger trend to monopolisation. Aside from the notorious issue of
power accumulation, the rise of data monopolies points at a phenomenon of
technical convergence that is key to this book: the means of labour have
become the same ones of its measurement, and, likewise, the means of
management and logistics have become the same ones of economic
planning.

This became evident also during the recent COVID-19 pandemic, when
a large infrastructure for tracking, measuring, and forecasting social
behaviours was established.25 This infrastructure, unprecedented in the
history of health care and biopolitics, however, was not created ex nihilo but
built upon existing digital platforms that orchestrate most of our social
relations. Particularly during the lockdowns, the same digital medium was
used for working, shopping, communicating with family and friends, and
eventually health care. Digital metrics of the social body such as
geolocation and other metadata were key for the predictive models of the
global contagion, but they have been long in use for tracking labour,
logistics, commerce, and education. Philosophers such as Giorgio Agamben
have claimed that this infrastructure extended the state of emergency of the
pandemic, while in fact its deployment to health care and biopolitics



continues decades of monitoring the economic productivity of the social
body which passed unnoticed to many.26

The technical convergence of data infrastructures reveals also that
contemporary automation is not just about the automation of an individual
worker, as in the stereotypical image of the humanoid robot, but about the
automation of the factory’s masters and managers, as happens in the gig
economy platforms. From the giants of logistics (Amazon, Alibaba, DHL,
UPS, etc.) and mobility (Uber, Share Now, Foodora, Deliveroo) to social
media (Facebook, TikTok, Twitter) – platform capitalism is a form of
automation that in reality does not replace workers but multiplies and
governs them anew. It is not so much about the automation of labour this
time as it is about the automation of management. Under this new form of
algorithmic management, we are all rendered as dividual workers of a vast
automaton comprised of global users, ‘turkers’, carers, drivers, and riders of
many sorts. The debate on the fear that AI fully replaces jobs is misguided:
in the so-called platform economy, in reality, algorithms replace
management and multiply precarious jobs. Although the revenues of the gig
economy remain minoritarian in relation to traditional local sectors, by
using the same infrastructure worldwide these platforms have established
monopoly positions. In conclusion, the power of the new ‘master’ is not
about the automation of individual tasks but the management of the social
division of labour. Against Alan Turing’s prediction, it was the master, not
the worker, that the robot came to replace first.27

One wonders what the chance of political intervention in such
technologically integrated space would be, and whether the call to ‘redesign
AI’ that grassroots and institutional initiatives advocate for is either
reasonable or practicable. This call should first respond to the more
pressing question: How is it possible to ‘redesign’ large-scale monopolies
of data and knowledge?28 As big companies such as Amazon, Walmart, and
Google have conquered a unique access to the needs and problems of the
whole social body, a growing movement is asking not just to make these
infrastructures more transparent and accountable but actually to collectivise
them as public services (as Fredric Jameson has suggested, among others),
or having them replaced by public alternatives (as Nick Srnicek has
advocated).29 But what would be a different way to design such
alternatives?



As this book’s theory of automation has suggested, any technology and
institutional apparatus, including AI, is a crystallisation of a productive
social process. Problems arise because such crystallisation ‘ossifies’ and
reiterates past structures, hierarchies, and inequalities. To criticise and
deconstruct complex artefacts such as AI monopolies, first we should
engage in a meticulous work of deconnectionism, undoing – step by step,
file by file, dataset by dataset, piece of metadata by piece of metadata,
correlation by correlation, pattern by pattern – the social and economic
fabric that constitutes them in origin. This work is already being advanced
by a new generation of scholars who are dissecting the global production
pipeline of AI, especially those who use methods of action research.
Notable, among many others, are Lilly Irani’s Turkopticon platform, used
for ‘interrupting worker invisibility’ in the gig platform Amazon
Mechanical Turk; Adam Harvey’s investigation of training datasets for face
recognition, which exposed the massive privacy infringements of AI
corporations and academic research; or the work of the Politically
Mathematics collective from India, who analysed the economic impact of
COVID-19 predictive models on the poorest population and reclaimed
mathematics as a space of political struggle (see their manifesto quoted at
the beginning of this conclusion).30

The labour theory of automation is an analytical principle for studying
also the new ‘eye of the master’ which AI monopolies incarnate. However,
precisely because of the emphasis on the labour process and social relations
that constitute technical systems, it is also a synthetic and ‘sociogenic’
principle (to use Frantz Fanon and Sylvia Wynter’s programmatic term).31

What is at the core of the labour theory of automation is, ultimately, a
practice of social autonomy. Technologies can be judged, contested,
reappropriated, and reinvented only by moving into the matrix of the social
relations that originally constituted them. Alternative technologies should
be situated in these social relations, in a way not dissimilar to what
cooperative movements have done in the past centuries. But building
alternative algorithms does not mean to make them more ethical. For
instance, the proposal to hard-code ethical rules into AI and robots appears
highly insufficient and incomplete because it does not directly address the
broad political function of automation at their core.32

What is needed is neither techno-solutionism nor techno-pauperism, but
instead a culture of invention, design and planning which cares for



communities and the collective, and never entirely relinquishes agency and
intelligence to automation. The first step of technopolitics is not
technological but political. It is about emancipating and decolonising, when
not abolishing as a whole, the organisation of labour and social relations on
which complex technical systems, industrial robots, and social algorithms
are based – specifically their inbuilt wage system, property rights, and
identity politics. New technologies for labour and society can only be based
on this political transformation. It is clear that this process unfolds also by
developing not only technical but also political knowledge. One of the
problematic effects of AI on society is its epistemic influence – the way in
which it renders intelligence as machine intelligence and implicitly fosters
knowledge as procedural knowledge. The project of a political
epistemology to transcend AI, however, will have to transmute the
historical forms of abstract thinking (mathematical, mechanical,
algorithmic, and statistical) and integrate them as part of the toolbox of
critical thinking itself. In confronting the epistemology of AI and its regime
of knowledge extractivism, a different technical mentality, a collective
‘counter-intelligence’, has to be learned.
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